Deep Learning verschafft dem Computer die Fähigkeit selbstständig zu lernen und revolutioniert derzeit die Weiterentwicklung der künstlichen Intelligenz. Hinter dem Begriff Deep Learning stehen tiefe neuronale Netze. Darauf basierende Anwendungen erfuhren in den letzten Jahren einen rapiden Fortschritt und erzielen heute in Bereichen wie Sprach- und Bilderkennung sowie dem autonomen Fahren beeindruckende Erfolge. Diese lassen sich bislang nur bedingt theoretisch nachweisen, sodass eine Forschungslücke zwischen Theorie und Praxis besteht.
Ziel der vorliegenden Arbeit ist es, einen Beitrag zu der aktuellen statistischen Theorie des Deep Learnings zu leisten. Einige Arbeiten beschäftigten sich bereits mit dem Einsatz von neuronalen Netzen als nichtparametrische Regressionsschätzer. Unter bestimmten kompositionellen Annahmen an die Regressionsfunktion konnten für diese Schätzer dimensionsfreie Konvergenzraten hergeleitet und so der Fluch der hohen Dimension umgangen werden. Die hierbei angenommene Topologie der verwendeten Netze wies stets eine unvollständige Verbundenheit der Neuronen in aufeinanderfolgenden Schichten auf. Eine Annahme, die bislang als essenziell für den Erfolg der Netze angesehen wurde. Die Ergebnisse der vorliegenden Arbeit stellen die Notwendigkeit dieser Annahme allerdings in Frage. Aufbauend auf einem neuen Approximationsresultat für vollverbundene neuronale Netze, werden für einen darauf basierenden Schätzer vergleichbare dimensionsfreie Konvergenzraten hergeleitet.
Des Weiteren werden neuronale Netze zur Schätzung von Regressionsfunktionen mit kleiner lokaler Dimension eingesetzt. Gezeigt wird, dass ein auf neuronalen Netzen basierender Schätzer für diese Funktionsklasse ebenfalls dimensionsfreie Konvergenzergebnisse erzielt. Grundlegend für den Beweis ist hierbei ein Resultat, das die Verbindung zwischen neuronalen Netzen und einem anderen statistischen Verfahren, den multivariaten adaptiven Regressionssplines, untersucht.
Aktualisiert: 2020-12-26
> findR *
Voraussetzung für die Anwendung ökonometrischer Entscheidungsmodelle mit skalarwertiger Zielfunktion ist die numerische Spezifikation einer skalarwertigen Funktion, die die Präferenzstruktur eines Entscheidungsträgers abbildet. Die Schätzung der skalarwertigen Präferenzfunktion kann im Rahmen der Regressionsanalyse auf der Grundlage von Befragungsdaten vorgenommen werden. In der vorliegenden Arbeit werden nach einem Literaturüberblick zwei Methoden diskutiert, die besonders gut zur Schätzung skalarwertiger Präferenzfunktionen geeignet sind: die Kleinst-Quadrate-Methode sowie das Kernschätzverfahren. Dabei werden u.a. auch nutzentheoretische Grundlagen diskutiert. Es wird vorgeschlagen, das Kriterium D-Optimalität zu verwenden, um hypothetische Alternativen für die Befragung von Entscheidungsträgern zu erzeugen. Anhand einer empirischen Untersuchung erfolgt die Anwendung der diskutierten Verfahren.
Aktualisiert: 2019-12-19
> findR *
MEHR ANZEIGEN
Bücher zum Thema Regressionsschätzung
Sie suchen ein Buch über Regressionsschätzung? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Regressionsschätzung. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Regressionsschätzung im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Regressionsschätzung einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Regressionsschätzung - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Regressionsschätzung, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Regressionsschätzung und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.