Approximative Public-Key-Kryptosysteme
Patrick Horster, Hartmut Isselhorst
In der vorliegenden Arbeit werden die Einsatzmöglichkeiten approximativer Verfahren für Public-Key-Kryptosysteme untersucht. Dazu werden in einer allgemeinverständlichen Einleitung die notwendigen Grundlagen erarbeitet. Im Anschluß daran werden Resultate über eine reellwertige Approximation periodischer und nichtperiodischer Funktionen für Verschlüsselungssysteme mit öffentlichem Schlüssel entwickelt. Weiterhin werden die kryptologischen Eigenschaften rationaler Zahlen untersucht. Diese fließen in die Entwicklung eines neuen Konzeptes für ein Public-Key-Kryptosystem ein, die Public-Key-Hill-Chiffre, die auch digitale Unterschriften zuläßt. Zur Abrundung der Thematik werden weitere Anwendungen in verwandten Gebieten dargestellt: die exakte Arithmetik mit rationalen Zahlen auf der Basis von Gleitkommazahlen und ein neuer Ansatz für Faktorisierungsalgorithmen. Damit ist das zentrale Ergebnis die Benutzung rationaler Zahlen in Public-Key-Kryptosystemen, die eine neue Forschungsrichtung innerhalb der Kryptologie eröffnen könnte. Der fachkundige Leser erhält Informationen über neue Forschungsansätze und Methoden in der Kryptologie, fachfremde Leser erhalten einen guten Überblick über die Problemstellung der Entwicklung neuer Public-Key-Kryptosysteme.