Um der weltweiten Erderwärmung und dem dadurch verursachten Klimawandel zu begegnen, stellt Carbon Capture and Storage (CCS) eine vielversprechende Technologie dar, um den Zeitraum bis die weltweite Energiewirtschaft auf eine CO2-neutrale Energieerzeugung umgestellt ist, zu überbrücken. Hierbei wird CO2 aus den Rauchgasen von Kraftwerken abgeschieden, um anschließend langfristig in tiefliegenden geeigneten Formationen gespeichert zu werden. Damit CO2-Speicherstandorte sicher betrieben werden können, sind unerwünschte Prozesse wie beispielsweise die Freisetzung von gespeichertem CO2 in die Atmosphäre, die Migration von CO2 oder Formationsfluid aus tieferen Grundwasserleitern in oberflächennahe Süßwasserhorizonte sowie die Reaktivierung von Störungen, zu vermeiden. Hierfür sind sowohl deterministische und probabilistische Risikoanalysen notwendig.
Da die Untersuchung des Prozesses einer hydraulischen Reaktivierung von geologischen Störungen rechenzeitintensive hydromechanisch gekoppelte numerische Simulationen erfordert, sind probabilistische Risikobetrachtungen, die eine Vielzahl von Realisierungen bedingen, nicht uneingeschränkt möglich. Für die Realisierung der Simulationen werden in der Regel sequenzielle Kopplungsmethoden verwendet. Hierbei wird der Mehrphasenfluidfluss-Prozess durch ein hydraulisches Programmsystem simuliert. Die hiermit ermittelte Porendruckverteilung wird anschließend nach jedem Simulationsschritt an ein geomechanisches Programmsystem übertragen, um einen hieraus resultierenden neuen Spannungs-Dehnungszustand zu ermitteln. Dieser wird in Form von aktualisierten Porositäten und Permeabilitäten an das hydraulische Programmsystem zurückgegeben, wobei der Datentransfer sowohl sequenziell iterativ oder nicht iterativ erfolgen kann.
Um eine signifikante Rechenzeitersparnis zu erzielen, wird im Rahmen dieser Arbeit eine Kopplungsmethode entwickelt, in der aus dem Mehrphasenfluidfluss-Prozess resultierende Porendruckverteilungen weiterhin von einem hydraulischen Programmsystem ermittelt werden. Die aus einer Störungsreaktivierung resultierende geomechanische Antwort wird hierbei jedoch für unterschiedliche Bezugselemente innerhalb der Störung durch semi-analytische Funktionen in Abhängigkeit eines im Schnittpunkt zwischen Speicherformation und Störung definierten Referenzporendrucks berechnet.
Aktualisiert: 2023-06-30
> findR *
Um der weltweiten Erderwärmung und dem dadurch verursachten Klimawandel zu begegnen, stellt Carbon Capture and Storage (CCS) eine vielversprechende Technologie dar, um den Zeitraum bis die weltweite Energiewirtschaft auf eine CO2-neutrale Energieerzeugung umgestellt ist, zu überbrücken. Hierbei wird CO2 aus den Rauchgasen von Kraftwerken abgeschieden, um anschließend langfristig in tiefliegenden geeigneten Formationen gespeichert zu werden. Damit CO2-Speicherstandorte sicher betrieben werden können, sind unerwünschte Prozesse wie beispielsweise die Freisetzung von gespeichertem CO2 in die Atmosphäre, die Migration von CO2 oder Formationsfluid aus tieferen Grundwasserleitern in oberflächennahe Süßwasserhorizonte sowie die Reaktivierung von Störungen, zu vermeiden. Hierfür sind sowohl deterministische und probabilistische Risikoanalysen notwendig.
Da die Untersuchung des Prozesses einer hydraulischen Reaktivierung von geologischen Störungen rechenzeitintensive hydromechanisch gekoppelte numerische Simulationen erfordert, sind probabilistische Risikobetrachtungen, die eine Vielzahl von Realisierungen bedingen, nicht uneingeschränkt möglich. Für die Realisierung der Simulationen werden in der Regel sequenzielle Kopplungsmethoden verwendet. Hierbei wird der Mehrphasenfluidfluss-Prozess durch ein hydraulisches Programmsystem simuliert. Die hiermit ermittelte Porendruckverteilung wird anschließend nach jedem Simulationsschritt an ein geomechanisches Programmsystem übertragen, um einen hieraus resultierenden neuen Spannungs-Dehnungszustand zu ermitteln. Dieser wird in Form von aktualisierten Porositäten und Permeabilitäten an das hydraulische Programmsystem zurückgegeben, wobei der Datentransfer sowohl sequenziell iterativ oder nicht iterativ erfolgen kann.
Um eine signifikante Rechenzeitersparnis zu erzielen, wird im Rahmen dieser Arbeit eine Kopplungsmethode entwickelt, in der aus dem Mehrphasenfluidfluss-Prozess resultierende Porendruckverteilungen weiterhin von einem hydraulischen Programmsystem ermittelt werden. Die aus einer Störungsreaktivierung resultierende geomechanische Antwort wird hierbei jedoch für unterschiedliche Bezugselemente innerhalb der Störung durch semi-analytische Funktionen in Abhängigkeit eines im Schnittpunkt zwischen Speicherformation und Störung definierten Referenzporendrucks berechnet.
Aktualisiert: 2023-06-30
> findR *
Um der weltweiten Erderwärmung und dem dadurch verursachten Klimawandel zu begegnen, stellt Carbon Capture and Storage (CCS) eine vielversprechende Technologie dar, um den Zeitraum bis die weltweite Energiewirtschaft auf eine CO2-neutrale Energieerzeugung umgestellt ist, zu überbrücken. Hierbei wird CO2 aus den Rauchgasen von Kraftwerken abgeschieden, um anschließend langfristig in tiefliegenden geeigneten Formationen gespeichert zu werden. Damit CO2-Speicherstandorte sicher betrieben werden können, sind unerwünschte Prozesse wie beispielsweise die Freisetzung von gespeichertem CO2 in die Atmosphäre, die Migration von CO2 oder Formationsfluid aus tieferen Grundwasserleitern in oberflächennahe Süßwasserhorizonte sowie die Reaktivierung von Störungen, zu vermeiden. Hierfür sind sowohl deterministische und probabilistische Risikoanalysen notwendig.
Da die Untersuchung des Prozesses einer hydraulischen Reaktivierung von geologischen Störungen rechenzeitintensive hydromechanisch gekoppelte numerische Simulationen erfordert, sind probabilistische Risikobetrachtungen, die eine Vielzahl von Realisierungen bedingen, nicht uneingeschränkt möglich. Für die Realisierung der Simulationen werden in der Regel sequenzielle Kopplungsmethoden verwendet. Hierbei wird der Mehrphasenfluidfluss-Prozess durch ein hydraulisches Programmsystem simuliert. Die hiermit ermittelte Porendruckverteilung wird anschließend nach jedem Simulationsschritt an ein geomechanisches Programmsystem übertragen, um einen hieraus resultierenden neuen Spannungs-Dehnungszustand zu ermitteln. Dieser wird in Form von aktualisierten Porositäten und Permeabilitäten an das hydraulische Programmsystem zurückgegeben, wobei der Datentransfer sowohl sequenziell iterativ oder nicht iterativ erfolgen kann.
Um eine signifikante Rechenzeitersparnis zu erzielen, wird im Rahmen dieser Arbeit eine Kopplungsmethode entwickelt, in der aus dem Mehrphasenfluidfluss-Prozess resultierende Porendruckverteilungen weiterhin von einem hydraulischen Programmsystem ermittelt werden. Die aus einer Störungsreaktivierung resultierende geomechanische Antwort wird hierbei jedoch für unterschiedliche Bezugselemente innerhalb der Störung durch semi-analytische Funktionen in Abhängigkeit eines im Schnittpunkt zwischen Speicherformation und Störung definierten Referenzporendrucks berechnet.
Aktualisiert: 2023-06-30
> findR *
Um der weltweiten Erderwärmung und dem dadurch verursachten Klimawandel zu begegnen, stellt Carbon Capture and Storage (CCS) eine vielversprechende Technologie dar, um den Zeitraum bis die weltweite Energiewirtschaft auf eine CO2-neutrale Energieerzeugung umgestellt ist, zu überbrücken. Hierbei wird CO2 aus den Rauchgasen von Kraftwerken abgeschieden, um anschließend langfristig in tiefliegenden geeigneten Formationen gespeichert zu werden. Damit CO2-Speicherstandorte sicher betrieben werden können, sind unerwünschte Prozesse wie beispielsweise die Freisetzung von gespeichertem CO2 in die Atmosphäre, die Migration von CO2 oder Formationsfluid aus tieferen Grundwasserleitern in oberflächennahe Süßwasserhorizonte sowie die Reaktivierung von Störungen, zu vermeiden. Hierfür sind sowohl deterministische und probabilistische Risikoanalysen notwendig.
Da die Untersuchung des Prozesses einer hydraulischen Reaktivierung von geologischen Störungen rechenzeitintensive hydromechanisch gekoppelte numerische Simulationen erfordert, sind probabilistische Risikobetrachtungen, die eine Vielzahl von Realisierungen bedingen, nicht uneingeschränkt möglich. Für die Realisierung der Simulationen werden in der Regel sequenzielle Kopplungsmethoden verwendet. Hierbei wird der Mehrphasenfluidfluss-Prozess durch ein hydraulisches Programmsystem simuliert. Die hiermit ermittelte Porendruckverteilung wird anschließend nach jedem Simulationsschritt an ein geomechanisches Programmsystem übertragen, um einen hieraus resultierenden neuen Spannungs-Dehnungszustand zu ermitteln. Dieser wird in Form von aktualisierten Porositäten und Permeabilitäten an das hydraulische Programmsystem zurückgegeben, wobei der Datentransfer sowohl sequenziell iterativ oder nicht iterativ erfolgen kann.
Um eine signifikante Rechenzeitersparnis zu erzielen, wird im Rahmen dieser Arbeit eine Kopplungsmethode entwickelt, in der aus dem Mehrphasenfluidfluss-Prozess resultierende Porendruckverteilungen weiterhin von einem hydraulischen Programmsystem ermittelt werden. Die aus einer Störungsreaktivierung resultierende geomechanische Antwort wird hierbei jedoch für unterschiedliche Bezugselemente innerhalb der Störung durch semi-analytische Funktionen in Abhängigkeit eines im Schnittpunkt zwischen Speicherformation und Störung definierten Referenzporendrucks berechnet.
Aktualisiert: 2021-11-25
> findR *
MEHR ANZEIGEN
Bücher von Adams, Markus
Sie suchen ein Buch oder Publikation vonAdams, Markus ? Bei Buch findr finden Sie alle Bücher Adams, Markus.
Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher
von Adams, Markus im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die
Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus
unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und
populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich
bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch
von Adams, Markus .
Adams, Markus - Große Auswahl an Publikationen bei Buch findr
Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher
von Adams, Markus die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten
vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher
verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:
Unser Repertoire umfasst Bücher von
- Adamska, Anna
- Adamska, Dagmara
- Adamske, Antonius
- Adamski, Björn
- Adamski, Björn
- Adamski, Dirk
- Adamski, George
- Adamski, Heike
- Adamski, Jakub
- Adamski, Jens
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Neben Büchern von Adams, Markus und Büchern aus verschiedenen Kategorien finden Sie schnell und
einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem
Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die
bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen,
Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen
das Team von Buchfindr.