Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen “Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht.” — Justin Bozonier Leitender Data Scientist bei Grubhub
Aktualisiert: 2023-06-11
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen “Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht.” — Justin Bozonier Leitender Data Scientist bei Grubhub
Aktualisiert: 2023-05-11
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-08
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-08
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-08
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-05
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-05
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-05
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-05
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-04-24
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-04-24
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-04-24
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen “Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht.” — Justin Bozonier Leitender Data Scientist bei Grubhub
Aktualisiert: 2023-04-11
> findR *
MEHR ANZEIGEN

Bücher von Albon, Chris

Sie suchen ein Buch oder Publikation vonAlbon, Chris ? Bei Buch findr finden Sie alle Bücher Albon, Chris. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher von Albon, Chris im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch von Albon, Chris .

Albon, Chris - Große Auswahl an Publikationen bei Buch findr

Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher von Albon, Chris die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:

Unser Repertoire umfasst Bücher von

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Neben Büchern von Albon, Chris und Büchern aus verschiedenen Kategorien finden Sie schnell und einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.