Lassen Sie Ihre Deep-Learning-Modelle kreativ werden!
Aktualisiert: 2023-06-11
> findR *
Lassen Sie Ihre Deep-Learning-Modelle kreativ werden!
Aktualisiert: 2023-05-11
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-05-08
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-05-08
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-05-08
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-05-05
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-05-05
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-05-05
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-04-24
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-04-24
> findR *
Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen – kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden, wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle.
David Foster vermittelt zunächst die Grundlagen des Deep Learning mit Keras und veranschaulicht die Funktionsweise jeder Methode, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen Ihnen herauszufinden, wie Ihre Modelle noch effizienter lernen und noch kreativer werden können.
- Entdecken Sie, wie Variational Autoencoder den Gesichtsausdruck auf Fotos verändern können
- Erstellen Sie praktische GAN-Beispiele von Grund auf und nutzen Sie CycleGAN zur Stilübertragung und MuseGAN zum Generieren von Musik
- Verwenden Sie rekurrente generative Modelle, um Text zu erzeugen, und lernen Sie, wie Sie diese Modelle mit dem Attention-Mechanismus verbessern können
- Erfahren Sie, wie generatives Deep Learning Agenten dabei unterstützen kann, Aufgaben im Rahmen des Reinforcement Learning zu erfüllen
- Lernen Sie die Architektur von Transformern (BERT, GPT-2) und Bilderzeugungsmodellen wie ProGAN und StyleGAN kennen
"Dieses Buch ist eine leicht zugängliche Einführung in das Deep-Learning-Toolkit für generatives Modellieren. Wenn Sie ein kreativer Praktiker sind, der es liebt, an Code zu basteln, und Deep Learning für eigene Aufgaben nutzen möchte, dann ist dieses Buch genau das Richtige für Sie."
— David Ha, Research Scientist bei Google Brain
Aktualisiert: 2023-04-24
> findR *
Lassen Sie Ihre Deep-Learning-Modelle kreativ werden!
Aktualisiert: 2023-04-11
> findR *
MEHR ANZEIGEN
Bücher von Foster, David
Sie suchen ein Buch oder Publikation vonFoster, David ? Bei Buch findr finden Sie alle Bücher Foster, David.
Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher
von Foster, David im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die
Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus
unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und
populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich
bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch
von Foster, David .
Foster, David - Große Auswahl an Publikationen bei Buch findr
Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher
von Foster, David die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten
vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher
verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:
Unser Repertoire umfasst Bücher von
- Fostier, Johan
- Fostroy, Paule
- Fostyak, Khrystyna
- fotalia.de / PetarPaunchev, Titelbild:
- Foth, Detlev
- Foth, Dietmar
- Foth, Eberhard
- Foth, Egmont
- Foth, Gerhard
- Foth, Gerhardt
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Neben Büchern von Foster, David und Büchern aus verschiedenen Kategorien finden Sie schnell und
einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem
Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die
bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen,
Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen
das Team von Buchfindr.