Mikrostrukturierte Kunststoffformteile werden für optische Anwendungen im Bereich des Lichtmanagements, für Plagiatschutz, zur Fluidmischung und -leitung in Labs-on-a-Chip und im Tissue Engineering verwendet. Für viele Anwendungen ist eine genaue Reproduzierung von definierten Geometrien notwendig. Dies stellt Entwickler und Produzenten von mikrostrukturierten Formteilen insbesondere im Spritzgießprozess vor Herausforderungen. Die
in Kunststoff replizierten Strukturen entsprechen meist nicht den als Negativ in die Oberfläche des Spritzgießwerkzeugs eingebrachten Strukturen. Dies weckt den Wunsch nach einer Simulation des Abformprozesses bzw. nach der Vorhersage der abformbaren Strukturhöhen. Zu diesem Zweck werden Untersuchungen an mikrostrukturierten Formteilen durchgeführt, die für die Abformung relevanten Effekte identifiziert und die Wechselwirkung zwischen werkzeugseitiger Oberflächenstrukturierung, Abformung und Kavitätsfüllung betrachtet. Zur Vorhersage der Strukturabformung wird eine integrative Methode vorgestellt: Mittels einer kommerziell erhältlichen Simulationssoftware wird eine Füllsimulation der unstrukturierten Kavität durchgeführt. Als Ergebnis sind die simulierten Schmelzeeigenschaften vor dem Eintritt in die Mikrohohlräume bekannt und berücksichtigen die Einflüsse der Werkzeuggeometrie und des Materialverhaltens. Dazu wird ein physikalisches Modell für eine Kegel- und eine Linienstruktur hergeleitet, das den für die Strukturabformung notwendigen
Schmelzedruck beschreibt. Mit der Definition des Abformpotenzials wird eine dimensionslose Kenngröße eingeführt, die die Fähigkeit von Kunststoffschmelze quantifiziert, Mikrostrukturen abzuformen. Eine Betrachtung der Auswirkung von mikrostrukturierten Werkzeugoberflächen liefert die Erkenntnis eines stark ausgeprägten und signifikanten Effekts der Struktur auf die Kavitätsfüllung. Bei einer geeigneten Wahl von Schmelzeviskosität und Strukturflächendichte
kann eine deutliche Fließwegverlängerung sowie eine Reduzierung des Druckverlusts erreicht werden. Dies ist auf die Abhängigkeit der Kontaktfläche zwischen Schmelze und Werkzeug von der strukturierten Fläche und der Fließfähigkeit der Schmelze zurückzuführen. Das Wissen darüber, wie Mikrostrukturen die erreichbaren Fließweglängen, Druckverluste und
Schmelzetemperaturen beeinflussen, kann in der Praxis genutzt werden, um bei gleicher Maschinentechnik längere Fließwege im Vergleich zu unstrukturierten Kavitäten zu erreichen.
Aktualisiert: 2023-06-30
> findR *
Mikrostrukturierte Kunststoffformteile werden für optische Anwendungen im Bereich des Lichtmanagements, für Plagiatschutz, zur Fluidmischung und -leitung in Labs-on-a-Chip und im Tissue Engineering verwendet. Für viele Anwendungen ist eine genaue Reproduzierung von definierten Geometrien notwendig. Dies stellt Entwickler und Produzenten von mikrostrukturierten Formteilen insbesondere im Spritzgießprozess vor Herausforderungen. Die
in Kunststoff replizierten Strukturen entsprechen meist nicht den als Negativ in die Oberfläche des Spritzgießwerkzeugs eingebrachten Strukturen. Dies weckt den Wunsch nach einer Simulation des Abformprozesses bzw. nach der Vorhersage der abformbaren Strukturhöhen. Zu diesem Zweck werden Untersuchungen an mikrostrukturierten Formteilen durchgeführt, die für die Abformung relevanten Effekte identifiziert und die Wechselwirkung zwischen werkzeugseitiger Oberflächenstrukturierung, Abformung und Kavitätsfüllung betrachtet. Zur Vorhersage der Strukturabformung wird eine integrative Methode vorgestellt: Mittels einer kommerziell erhältlichen Simulationssoftware wird eine Füllsimulation der unstrukturierten Kavität durchgeführt. Als Ergebnis sind die simulierten Schmelzeeigenschaften vor dem Eintritt in die Mikrohohlräume bekannt und berücksichtigen die Einflüsse der Werkzeuggeometrie und des Materialverhaltens. Dazu wird ein physikalisches Modell für eine Kegel- und eine Linienstruktur hergeleitet, das den für die Strukturabformung notwendigen
Schmelzedruck beschreibt. Mit der Definition des Abformpotenzials wird eine dimensionslose Kenngröße eingeführt, die die Fähigkeit von Kunststoffschmelze quantifiziert, Mikrostrukturen abzuformen. Eine Betrachtung der Auswirkung von mikrostrukturierten Werkzeugoberflächen liefert die Erkenntnis eines stark ausgeprägten und signifikanten Effekts der Struktur auf die Kavitätsfüllung. Bei einer geeigneten Wahl von Schmelzeviskosität und Strukturflächendichte
kann eine deutliche Fließwegverlängerung sowie eine Reduzierung des Druckverlusts erreicht werden. Dies ist auf die Abhängigkeit der Kontaktfläche zwischen Schmelze und Werkzeug von der strukturierten Fläche und der Fließfähigkeit der Schmelze zurückzuführen. Das Wissen darüber, wie Mikrostrukturen die erreichbaren Fließweglängen, Druckverluste und
Schmelzetemperaturen beeinflussen, kann in der Praxis genutzt werden, um bei gleicher Maschinentechnik längere Fließwege im Vergleich zu unstrukturierten Kavitäten zu erreichen.
Aktualisiert: 2023-06-30
> findR *
Mikrostrukturierte Kunststoffformteile werden für optische Anwendungen im Bereich des Lichtmanagements, für Plagiatschutz, zur Fluidmischung und -leitung in Labs-on-a-Chip und im Tissue Engineering verwendet. Für viele Anwendungen ist eine genaue Reproduzierung von definierten Geometrien notwendig. Dies stellt Entwickler und Produzenten von mikrostrukturierten Formteilen insbesondere im Spritzgießprozess vor Herausforderungen. Die
in Kunststoff replizierten Strukturen entsprechen meist nicht den als Negativ in die Oberfläche des Spritzgießwerkzeugs eingebrachten Strukturen. Dies weckt den Wunsch nach einer Simulation des Abformprozesses bzw. nach der Vorhersage der abformbaren Strukturhöhen. Zu diesem Zweck werden Untersuchungen an mikrostrukturierten Formteilen durchgeführt, die für die Abformung relevanten Effekte identifiziert und die Wechselwirkung zwischen werkzeugseitiger Oberflächenstrukturierung, Abformung und Kavitätsfüllung betrachtet. Zur Vorhersage der Strukturabformung wird eine integrative Methode vorgestellt: Mittels einer kommerziell erhältlichen Simulationssoftware wird eine Füllsimulation der unstrukturierten Kavität durchgeführt. Als Ergebnis sind die simulierten Schmelzeeigenschaften vor dem Eintritt in die Mikrohohlräume bekannt und berücksichtigen die Einflüsse der Werkzeuggeometrie und des Materialverhaltens. Dazu wird ein physikalisches Modell für eine Kegel- und eine Linienstruktur hergeleitet, das den für die Strukturabformung notwendigen
Schmelzedruck beschreibt. Mit der Definition des Abformpotenzials wird eine dimensionslose Kenngröße eingeführt, die die Fähigkeit von Kunststoffschmelze quantifiziert, Mikrostrukturen abzuformen. Eine Betrachtung der Auswirkung von mikrostrukturierten Werkzeugoberflächen liefert die Erkenntnis eines stark ausgeprägten und signifikanten Effekts der Struktur auf die Kavitätsfüllung. Bei einer geeigneten Wahl von Schmelzeviskosität und Strukturflächendichte
kann eine deutliche Fließwegverlängerung sowie eine Reduzierung des Druckverlusts erreicht werden. Dies ist auf die Abhängigkeit der Kontaktfläche zwischen Schmelze und Werkzeug von der strukturierten Fläche und der Fließfähigkeit der Schmelze zurückzuführen. Das Wissen darüber, wie Mikrostrukturen die erreichbaren Fließweglängen, Druckverluste und
Schmelzetemperaturen beeinflussen, kann in der Praxis genutzt werden, um bei gleicher Maschinentechnik längere Fließwege im Vergleich zu unstrukturierten Kavitäten zu erreichen.
Aktualisiert: 2023-06-30
> findR *
Mikrostrukturierte Kunststoffformteile werden für optische Anwendungen im Bereich des Lichtmanagements, für Plagiatschutz, zur Fluidmischung und -leitung in Labs-on-a-Chip und im Tissue Engineering verwendet. Für viele Anwendungen ist eine genaue Reproduzierung von definierten Geometrien notwendig. Dies stellt Entwickler und Produzenten von mikrostrukturierten Formteilen insbesondere im Spritzgießprozess vor Herausforderungen. Die
in Kunststoff replizierten Strukturen entsprechen meist nicht den als Negativ in die Oberfläche des Spritzgießwerkzeugs eingebrachten Strukturen. Dies weckt den Wunsch nach einer Simulation des Abformprozesses bzw. nach der Vorhersage der abformbaren Strukturhöhen. Zu diesem Zweck werden Untersuchungen an mikrostrukturierten Formteilen durchgeführt, die für die Abformung relevanten Effekte identifiziert und die Wechselwirkung zwischen werkzeugseitiger Oberflächenstrukturierung, Abformung und Kavitätsfüllung betrachtet. Zur Vorhersage der Strukturabformung wird eine integrative Methode vorgestellt: Mittels einer kommerziell erhältlichen Simulationssoftware wird eine Füllsimulation der unstrukturierten Kavität durchgeführt. Als Ergebnis sind die simulierten Schmelzeeigenschaften vor dem Eintritt in die Mikrohohlräume bekannt und berücksichtigen die Einflüsse der Werkzeuggeometrie und des Materialverhaltens. Dazu wird ein physikalisches Modell für eine Kegel- und eine Linienstruktur hergeleitet, das den für die Strukturabformung notwendigen
Schmelzedruck beschreibt. Mit der Definition des Abformpotenzials wird eine dimensionslose Kenngröße eingeführt, die die Fähigkeit von Kunststoffschmelze quantifiziert, Mikrostrukturen abzuformen. Eine Betrachtung der Auswirkung von mikrostrukturierten Werkzeugoberflächen liefert die Erkenntnis eines stark ausgeprägten und signifikanten Effekts der Struktur auf die Kavitätsfüllung. Bei einer geeigneten Wahl von Schmelzeviskosität und Strukturflächendichte
kann eine deutliche Fließwegverlängerung sowie eine Reduzierung des Druckverlusts erreicht werden. Dies ist auf die Abhängigkeit der Kontaktfläche zwischen Schmelze und Werkzeug von der strukturierten Fläche und der Fließfähigkeit der Schmelze zurückzuführen. Das Wissen darüber, wie Mikrostrukturen die erreichbaren Fließweglängen, Druckverluste und
Schmelzetemperaturen beeinflussen, kann in der Praxis genutzt werden, um bei gleicher Maschinentechnik längere Fließwege im Vergleich zu unstrukturierten Kavitäten zu erreichen.
Aktualisiert: 2023-06-30
> findR *
Mikrostrukturierte Kunststoffformteile werden für optische Anwendungen im Bereich des Lichtmanagements, für Plagiatschutz, zur Fluidmischung und -leitung in Labs-on-a-Chip und im Tissue Engineering verwendet. Für viele Anwendungen ist eine genaue Reproduzierung von definierten Geometrien notwendig. Dies stellt Entwickler und Produzenten von mikrostrukturierten Formteilen insbesondere im Spritzgießprozess vor Herausforderungen. Die
in Kunststoff replizierten Strukturen entsprechen meist nicht den als Negativ in die Oberfläche des Spritzgießwerkzeugs eingebrachten Strukturen. Dies weckt den Wunsch nach einer Simulation des Abformprozesses bzw. nach der Vorhersage der abformbaren Strukturhöhen. Zu diesem Zweck werden Untersuchungen an mikrostrukturierten Formteilen durchgeführt, die für die Abformung relevanten Effekte identifiziert und die Wechselwirkung zwischen werkzeugseitiger Oberflächenstrukturierung, Abformung und Kavitätsfüllung betrachtet. Zur Vorhersage der Strukturabformung wird eine integrative Methode vorgestellt: Mittels einer kommerziell erhältlichen Simulationssoftware wird eine Füllsimulation der unstrukturierten Kavität durchgeführt. Als Ergebnis sind die simulierten Schmelzeeigenschaften vor dem Eintritt in die Mikrohohlräume bekannt und berücksichtigen die Einflüsse der Werkzeuggeometrie und des Materialverhaltens. Dazu wird ein physikalisches Modell für eine Kegel- und eine Linienstruktur hergeleitet, das den für die Strukturabformung notwendigen
Schmelzedruck beschreibt. Mit der Definition des Abformpotenzials wird eine dimensionslose Kenngröße eingeführt, die die Fähigkeit von Kunststoffschmelze quantifiziert, Mikrostrukturen abzuformen. Eine Betrachtung der Auswirkung von mikrostrukturierten Werkzeugoberflächen liefert die Erkenntnis eines stark ausgeprägten und signifikanten Effekts der Struktur auf die Kavitätsfüllung. Bei einer geeigneten Wahl von Schmelzeviskosität und Strukturflächendichte
kann eine deutliche Fließwegverlängerung sowie eine Reduzierung des Druckverlusts erreicht werden. Dies ist auf die Abhängigkeit der Kontaktfläche zwischen Schmelze und Werkzeug von der strukturierten Fläche und der Fließfähigkeit der Schmelze zurückzuführen. Das Wissen darüber, wie Mikrostrukturen die erreichbaren Fließweglängen, Druckverluste und
Schmelzetemperaturen beeinflussen, kann in der Praxis genutzt werden, um bei gleicher Maschinentechnik längere Fließwege im Vergleich zu unstrukturierten Kavitäten zu erreichen.
Aktualisiert: 2021-10-20
> findR *
MEHR ANZEIGEN
Bücher von Orth, Magnus Johannes
Sie suchen ein Buch oder Publikation vonOrth, Magnus Johannes ? Bei Buch findr finden Sie alle Bücher Orth, Magnus Johannes.
Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher
von Orth, Magnus Johannes im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die
Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus
unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und
populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich
bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch
von Orth, Magnus Johannes .
Orth, Magnus Johannes - Große Auswahl an Publikationen bei Buch findr
Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher
von Orth, Magnus Johannes die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten
vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher
verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:
Unser Repertoire umfasst Bücher von
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Neben Büchern von Orth, Magnus Johannes und Büchern aus verschiedenen Kategorien finden Sie schnell und
einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem
Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die
bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen,
Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen
das Team von Buchfindr.