Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Mack,  Konstantin, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen “Dieses Buch bietet einen großartigen Einstieg in Deep Learning für alle, denen praktische Ergebnisse wichtiger sind als die Theorie. Es hat dem Entwicklungsteam meines neuen Musik-Tech-Startups Weav dabei geholfen, schnell mit Deep Learning zu starten. Dieses Buch ist perfekt geeignet für jeden, der Interesse an praxisorientiertem Machine Learning hat.” — Lars Rasmussen, Mitbegründer von Google Maps
Aktualisiert: 2023-06-29
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Mack,  Konstantin, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen “Dieses Buch bietet einen großartigen Einstieg in Deep Learning für alle, denen praktische Ergebnisse wichtiger sind als die Theorie. Es hat dem Entwicklungsteam meines neuen Musik-Tech-Startups Weav dabei geholfen, schnell mit Deep Learning zu starten. Dieses Buch ist perfekt geeignet für jeden, der Interesse an praxisorientiertem Machine Learning hat.” — Lars Rasmussen, Mitbegründer von Google Maps
Aktualisiert: 2023-06-11
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Mack,  Konstantin, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen “Dieses Buch bietet einen großartigen Einstieg in Deep Learning für alle, denen praktische Ergebnisse wichtiger sind als die Theorie. Es hat dem Entwicklungsteam meines neuen Musik-Tech-Startups Weav dabei geholfen, schnell mit Deep Learning zu starten. Dieses Buch ist perfekt geeignet für jeden, der Interesse an praxisorientiertem Machine Learning hat.” — Lars Rasmussen, Mitbegründer von Google Maps
Aktualisiert: 2023-05-11
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-08
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-08
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-08
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-05
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-05
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-05
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-04-24
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-04-24
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-04-24
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Mack,  Konstantin, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen “Dieses Buch bietet einen großartigen Einstieg in Deep Learning für alle, denen praktische Ergebnisse wichtiger sind als die Theorie. Es hat dem Entwicklungsteam meines neuen Musik-Tech-Startups Weav dabei geholfen, schnell mit Deep Learning zu starten. Dieses Buch ist perfekt geeignet für jeden, der Interesse an praxisorientiertem Machine Learning hat.” — Lars Rasmussen, Mitbegründer von Google Maps
Aktualisiert: 2023-04-11
> findR *
MEHR ANZEIGEN

Bücher von Osinga, Douwe

Sie suchen ein Buch oder Publikation vonOsinga, Douwe ? Bei Buch findr finden Sie alle Bücher Osinga, Douwe. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher von Osinga, Douwe im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch von Osinga, Douwe .

Osinga, Douwe - Große Auswahl an Publikationen bei Buch findr

Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher von Osinga, Douwe die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:

Unser Repertoire umfasst Bücher von

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Neben Büchern von Osinga, Douwe und Büchern aus verschiedenen Kategorien finden Sie schnell und einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.