Die innere Geometrie der metrischen Räume

Die innere Geometrie der metrischen Räume von Rinow,  Willi
Die innere Geometrie einer Fläche ist die Lehre von denjenigen Eigenschaften, die bei isometrischen Abbildungen ungeändert bleiben, also nur von ihrer ersten Fundamentalform abhängen. Sie wurde von C. F. GAUSS durch die Entdeckung begründet, daß das Produkt der Hauptkrümmungsradien einer Fläche eine isometrische Invariante ist. B. RIEMANN dehnte diese Theorie in seiner Habilitationsschrift auf mehr dimensionale und damit gleichzeitig auf abstrakte Mannigfaltigkeiten aus. Während man zunächst nur das Studium solcher Mannigfaltigkeiten in Betracht zog, deren Bogenelement durch die Quadratwurzel aus einer quadratischen Differentialform gegeben ist, entwickelte P. FINSLER in seiner Dissertation die innere Geometrie auf der Grundlage eines all gemeinen Bogenelementes, eine Möglichkeit, die bereits B. RIEMANN erkannt hatte. Seit den klassischen Untersuchungen von J. HADAMARD über Flächen konstanter negativer Krümmung und von D. HILBERT über die Existenz von Extremalen bei Variationsproblemen setzte sich die Erkenntnis immer mehr durch, daß ein großer Teil der Methoden, insbesondere diejenigen, welche in der Differentialgeometrie im Großen entwickelt worden sind, nur die topologische und metrische Struktur der Mannigfaltigkeiten, nicht aber ihre Differenzierbarkeitsstruktur be nötigen. Der von FREcHET geschaffene Begriff des metrischen Raumes ermöglichte es, die innere Geometrie auf einer von Differenzierbarkeits voraussetzungen freien Grundlage zu stellen. Zunächst stand jedoch die Topologie der metrischen Räume im Vordergrund des Interesses. Erst mit K. MENGER setzte ein systematisches Studium der isometrischen Invarianten ein. Inzwischen ist eine umfangreiche Literatur entstanden. Die Hauptergebnisse sind in den drei Büchern von A. D. ALEXANDROW[6J, L. M. BLuMENTHAL [1J und H.
Aktualisiert: 2023-07-02
> findR *

Die innere Geometrie der metrischen Räume

Die innere Geometrie der metrischen Räume von Rinow,  Willi
Die innere Geometrie einer Fläche ist die Lehre von denjenigen Eigenschaften, die bei isometrischen Abbildungen ungeändert bleiben, also nur von ihrer ersten Fundamentalform abhängen. Sie wurde von C. F. GAUSS durch die Entdeckung begründet, daß das Produkt der Hauptkrümmungsradien einer Fläche eine isometrische Invariante ist. B. RIEMANN dehnte diese Theorie in seiner Habilitationsschrift auf mehr dimensionale und damit gleichzeitig auf abstrakte Mannigfaltigkeiten aus. Während man zunächst nur das Studium solcher Mannigfaltigkeiten in Betracht zog, deren Bogenelement durch die Quadratwurzel aus einer quadratischen Differentialform gegeben ist, entwickelte P. FINSLER in seiner Dissertation die innere Geometrie auf der Grundlage eines all gemeinen Bogenelementes, eine Möglichkeit, die bereits B. RIEMANN erkannt hatte. Seit den klassischen Untersuchungen von J. HADAMARD über Flächen konstanter negativer Krümmung und von D. HILBERT über die Existenz von Extremalen bei Variationsproblemen setzte sich die Erkenntnis immer mehr durch, daß ein großer Teil der Methoden, insbesondere diejenigen, welche in der Differentialgeometrie im Großen entwickelt worden sind, nur die topologische und metrische Struktur der Mannigfaltigkeiten, nicht aber ihre Differenzierbarkeitsstruktur be nötigen. Der von FREcHET geschaffene Begriff des metrischen Raumes ermöglichte es, die innere Geometrie auf einer von Differenzierbarkeits voraussetzungen freien Grundlage zu stellen. Zunächst stand jedoch die Topologie der metrischen Räume im Vordergrund des Interesses. Erst mit K. MENGER setzte ein systematisches Studium der isometrischen Invarianten ein. Inzwischen ist eine umfangreiche Literatur entstanden. Die Hauptergebnisse sind in den drei Büchern von A. D. ALEXANDROW[6J, L. M. BLuMENTHAL [1J und H.
Aktualisiert: 2023-04-06
> findR *

Die innere Geometrie der metrischen Räume

Die innere Geometrie der metrischen Räume von Rinow,  Willi
Die innere Geometrie einer Fläche ist die Lehre von denjenigen Eigenschaften, die bei isometrischen Abbildungen ungeändert bleiben, also nur von ihrer ersten Fundamentalform abhängen. Sie wurde von C. F. GAUSS durch die Entdeckung begründet, daß das Produkt der Hauptkrümmungsradien einer Fläche eine isometrische Invariante ist. B. RIEMANN dehnte diese Theorie in seiner Habilitationsschrift auf mehr dimensionale und damit gleichzeitig auf abstrakte Mannigfaltigkeiten aus. Während man zunächst nur das Studium solcher Mannigfaltigkeiten in Betracht zog, deren Bogenelement durch die Quadratwurzel aus einer quadratischen Differentialform gegeben ist, entwickelte P. FINSLER in seiner Dissertation die innere Geometrie auf der Grundlage eines all gemeinen Bogenelementes, eine Möglichkeit, die bereits B. RIEMANN erkannt hatte. Seit den klassischen Untersuchungen von J. HADAMARD über Flächen konstanter negativer Krümmung und von D. HILBERT über die Existenz von Extremalen bei Variationsproblemen setzte sich die Erkenntnis immer mehr durch, daß ein großer Teil der Methoden, insbesondere diejenigen, welche in der Differentialgeometrie im Großen entwickelt worden sind, nur die topologische und metrische Struktur der Mannigfaltigkeiten, nicht aber ihre Differenzierbarkeitsstruktur be nötigen. Der von FREcHET geschaffene Begriff des metrischen Raumes ermöglichte es, die innere Geometrie auf einer von Differenzierbarkeits voraussetzungen freien Grundlage zu stellen. Zunächst stand jedoch die Topologie der metrischen Räume im Vordergrund des Interesses. Erst mit K. MENGER setzte ein systematisches Studium der isometrischen Invarianten ein. Inzwischen ist eine umfangreiche Literatur entstanden. Die Hauptergebnisse sind in den drei Büchern von A. D. ALEXANDROW[6J, L. M. BLuMENTHAL [1J und H.
Aktualisiert: 2023-04-06
> findR *
MEHR ANZEIGEN

Bücher von Rinow, Willi

Sie suchen ein Buch oder Publikation vonRinow, Willi ? Bei Buch findr finden Sie alle Bücher Rinow, Willi. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher von Rinow, Willi im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch von Rinow, Willi .

Rinow, Willi - Große Auswahl an Publikationen bei Buch findr

Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher von Rinow, Willi die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:

Unser Repertoire umfasst Bücher von

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Neben Büchern von Rinow, Willi und Büchern aus verschiedenen Kategorien finden Sie schnell und einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.