Algorithmic Bias: Verzerrungen durch Algorithmen verstehen und verhindern
Ein Leitfaden für Entscheider und Data Scientists
Tobias Bär
Sind Algorithmen Freund oder Feind?
Der menschliche Verstand ist evolutionär darauf ausgelegt, Abkürzungen zu nehmen, um zu überleben. Wir ziehen voreilige Schlüsse, weil unser Gehirn uns in Sicherheit wiegen will. Die meisten unserer Voreingenommenheiten wirken sich zu unseren Gunsten aus, z. B. wenn wir ein Auto, das in unsere Richtung fährt, für gefährlich halten und sofort ausweichen, oder wenn wir beschließen, einen Bissen Essen, der verdorben zu sein scheint, nicht zu essen. Allerdings wirken sich inhärente Vorurteile negativ auf das Arbeitsumfeld und die Entscheidungsfindung in unseren Gemeinschaften aus. Mit der Entwicklung von Algorithmen und maschinellem Lernen wird zwar versucht, Voreingenommenheit zu beseitigen, aber schließlich werden sie doch von Menschen geschaffen und sind daher anfällig für das, was wir als algorithmische Voreingenommenheit bezeichnen.
In Understand, Manage, and Prevent Algorithmic Bias (Algorithmische Voreingenommenheit verstehen, verwalten und verhindern) hilft Ihnen der Autor Tobias Baer zu verstehen, woher algorithmische Voreingenommenheit kommt, wie man sie als Geschäftsanwender oder Regulierungsbehörde handhaben kann und wie die Datenwissenschaft verhindern kann, dass Voreingenommenheit in statistische Algorithmen einfließt. Baer befasst sich fachkundig mit einigen der mehr als 100 Arten natürlicher Verzerrungen wie Confirmation Bias, Stability Bias, Pattern Recognition Bias und vielen anderen. Algorithmische Voreingenommenheit spiegelt diese menschlichen Tendenzen wider und hat ihren Ursprung in ihnen. Baer geht auf so unterschiedliche Themen wie die Erkennung von Anomalien, hybride Modellstrukturen und selbstverbesserndes maschinelles Lernen ein.
Während sich die meisten Schriften über algorithmische Voreingenommenheit auf die Gefahren konzentrieren, weist der Kern dieses positiven, unterhaltsamen Buches auf einen Weg hin, auf dem Voreingenommenheit in Schach gehalten und sogar beseitigt wird. Sie erhalten Managementtechniken, um unvoreingenommene Algorithmen zu entwickeln, die Fähigkeit, Voreingenommenheit schneller zu erkennen, und das Wissen, um unvoreingenommene Daten zu erstellen. Algorithmic Bias verstehen, verwalten und verhindern ist ein innovatives, zeitgemäßes und wichtiges Buch, das in Ihr Regal gehört. Egal, ob Sie eine erfahrene Führungskraft in der Wirtschaft, ein Datenwissenschaftler oder einfach nur ein Enthusiast sind, jetzt ist ein entscheidender Zeitpunkt, um sich über die Auswirkungen algorithmischer Verzerrungen auf die Gesellschaft zu informieren und eine aktive Rolle im Kampf gegen Verzerrungen zu übernehmen.
Was Sie lernen werden
Untersuchung der vielen Quellen algorithmischer Verzerrungen, einschließlich kognitiver Verzerrungen in der realen Welt, verzerrter Daten und statistischer Artefakte die Risiken algorithmischer Verzerrungen zu verstehen, zu wissen, wie sie zu erkennen sind, und Managementtechniken zu ihrer Vermeidung oder Bewältigung zu kennen Erkennen, wie maschinelles Lernen sowohl neue Quellen für algorithmische Verzerrungen schafft als auch ein Teil der Lösung sein kann Kenntnis spezifischer statistischer Techniken, die ein Datenwissenschaftler anwenden kann, um algorithmische Verzerrungen zu erkennen und zu beseitigen
Für wen dieses Buch bestimmt ist
Führungskräfte von Unternehmen, die Algorithmen im täglichen Betrieb einsetzen; Datenwissenschaftler (von Studenten bis hin zu erfahrenen Praktikern), die Algorithmen entwickeln; Beamte, die sich mit der Einhaltung von Vorschriften befassen und über algorithmische Verzerrungen besorgt sind; Politiker, Journalisten und Philosophen, die über algorithmische Verzerrungen im Hinblick auf ihre Auswirkungen auf die Gesellschaft und mögliche regulatorische Maßnahmen nachdenken; und Verbraucher, die sich darüber Gedanken machen, wie sie von algorithmischen Verzerrungen betroffen sein könnten