Keine Probleme mit Inversen Problemen
Eine Einführung in ihre stabile Lösung
Andreas Rieder
Inverse Probleme treten in der heutigen Hochtechnologie häufig auf. Immer wenn man von einer beobachteten (gemessenen) WIRKUNG auf deren URSACHE schließen möchte, liegt ein inverses Problem vor. So wird in der Computer-Tomographie die Abminderung von Röntgenstrahlen gemessen beim Durchgang durch ein Objekt (z.B. menschlicher Körper). Die Ursache der Abminderung ist die Dichte des Objekts. Ein anderes Beispiel stellt die Ultraschall-Tomographie dar: Hier wird die Streuung von Schallwellen an einem Objekt beobachtet, hervorgerufen durch die Form des Objekts, auf die man schließen möchte. Aus mathematischer Sicht bestehen inverse Probleme darin, Operatorgleichungen zu lösen. Das vorliegende Lehrbuch führt umfassend ein in die mathematischen Grundlagen zur stabilen Lösung inverser Probleme, zielt dabei aber auch auf konkrete Anwendungen ab.