Monte Carlo-Algorithmen
Thomas Müller-Gronbach, Erich Novak, Klaus Ritter
Der Text gibt eine Einführung in die Mathematik und die Anwendungsmöglichkeiten der Monte Carlo-Methoden und verwendet dazu durchgängig die Sprache der Stochastik. Der Leser lernt die Grundprinzipien und wesentlichen Eigenschaften dieser Verfahren kennen und wird dadurch in den Stand versetzt, dieses wichtige algorithmische Werkzeug kompetent einsetzen und die Ergebnisse interpretieren zu können. Anhand ausgewählter Fragestellungen wird er außerdem an aktuelle Forschungsfragen und -ergebnisse in diesem Bereich herangeführt. Behandelt werden die direkte Simulation, Methoden zur Simulation von Verteilungen und stochastischen Prozessen, Varianzreduktion, sowie Markov Chain Monte Carlo-Methoden und die hochdimensionale Integration. Es werden Anwendungsbeispiele aus der Teilchenphysik und der Finanz- und Versicherungsmathematik präsentiert, und anhand des Integrationsproblems wird gezeigt, wie sich die Frage nach optimalen Algorithmen formulieren und beantworten lässt.