Gruppentheoretische Begründung Metrischer Ebenen

Gruppentheoretische Begründung Metrischer Ebenen von Graumann,  Günter, Karzel,  Helmut
In der elementaren euklidischen Geometrie spielen die kongruenten Abbildungen eine wichtige Rolle. Bei ihrer Hintereinanderausführung ist dabei der Dreispiegelungssatz die wichtigste Aussage. Innerhalb der synthetischen Geometrie hat sich gezeigt, dass der Dreispiegelungssatz bis auf eine Reichhaltigkeitsforderung als Axiom genommen alleine ausreicht, um alle ebenen metrischen Geometrien über einem kommutativen Körper zu begründen. Obgleich diese Erkenntnis schon vor fünfzig Jahre gewonnen wurde, ist sie heute immer noch hochaktuell. Das Buch wendet sich an interessierte Mathematiker und Mathematikerinnen sowie Studierende der Mathematik. Insbesondere ist es geeignet für Lehrende und Studierende des Lehramts an Gymnasien als mathematischer Hintergrund der Abbildungsgeometrie wie sie im Geometrieunterricht in der Sekundarstufe I und in der Vektorgeometrie der Sekundarstufe II vorkommt.
Aktualisiert: 2020-04-24
> findR *

Gruppentheoretische Begründung Metrischer Ebenen

Gruppentheoretische Begründung Metrischer Ebenen von Graumann,  Günter, Karzel,  Helmut
In der elementaren euklidischen Geometrie spielen die kongruenten Abbildungen eine wichtige Rolle. Bei ihrer Hintereinanderausführung ist dabei der Dreispiegelungssatz die wichtigste Aussage. Innerhalb der synthetischen Geometrie hat sich gezeigt, dass der Dreispiegelungssatz bis auf eine Reichhaltigkeitsforderung als Axiom genommen alleine ausreicht, um alle ebenen metrischen Geometrien über einem kommutativen Körper zu begründen. Obgleich diese Erkenntnis schon vor fünfzig Jahre gewonnen wurde, ist sie heute immer noch hochaktuell. Das Buch wendet sich an interessierte Mathematiker und Mathematikerinnen sowie Studierende der Mathematik. Insbesondere ist es geeignet für Lehrende und Studierende des Lehramts an Gymnasien als mathematischer Hintergrund der Abbildungsgeometrie wie sie im Geometrieunterricht in der Sekundarstufe I und in der Vektorgeometrie der Sekundarstufe II vorkommt.
Aktualisiert: 2020-04-24
> findR *
MEHR ANZEIGEN

Bücher zum Thema Abbildungsgeometrie

Sie suchen ein Buch über Abbildungsgeometrie? Bei Buch findr finden Sie eine große Auswahl Bücher zum Thema Abbildungsgeometrie. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher zum Thema Abbildungsgeometrie im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zum Thema Abbildungsgeometrie einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.

Abbildungsgeometrie - Große Auswahl Bücher bei Buch findr

Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum Thema Abbildungsgeometrie, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Unter Abbildungsgeometrie und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.