Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Mack,  Konstantin, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen “Dieses Buch bietet einen großartigen Einstieg in Deep Learning für alle, denen praktische Ergebnisse wichtiger sind als die Theorie. Es hat dem Entwicklungsteam meines neuen Musik-Tech-Startups Weav dabei geholfen, schnell mit Deep Learning zu starten. Dieses Buch ist perfekt geeignet für jeden, der Interesse an praxisorientiertem Machine Learning hat.” — Lars Rasmussen, Mitbegründer von Google Maps
Aktualisiert: 2023-06-29
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Mack,  Konstantin, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen “Dieses Buch bietet einen großartigen Einstieg in Deep Learning für alle, denen praktische Ergebnisse wichtiger sind als die Theorie. Es hat dem Entwicklungsteam meines neuen Musik-Tech-Startups Weav dabei geholfen, schnell mit Deep Learning zu starten. Dieses Buch ist perfekt geeignet für jeden, der Interesse an praxisorientiertem Machine Learning hat.” — Lars Rasmussen, Mitbegründer von Google Maps
Aktualisiert: 2023-06-11
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Mack,  Konstantin, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen “Dieses Buch bietet einen großartigen Einstieg in Deep Learning für alle, denen praktische Ergebnisse wichtiger sind als die Theorie. Es hat dem Entwicklungsteam meines neuen Musik-Tech-Startups Weav dabei geholfen, schnell mit Deep Learning zu starten. Dieses Buch ist perfekt geeignet für jeden, der Interesse an praxisorientiertem Machine Learning hat.” — Lars Rasmussen, Mitbegründer von Google Maps
Aktualisiert: 2023-05-11
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-08
> findR *

Deep Learning illustriert

Deep Learning illustriert von Bassens,  Aglaé, Beyleveld,  Grant, Krohn,  Jon, Lichtenberg,  Kathrin
Deep Learning begreifen und einsetzen Einführung in verwandte Themen wie Künstliche Intelligenz, Machine Learning und Neuronale Netze viele Illustrationen, verständlich erklärt begleitendes online-Material zum Ausprobieren der Erläuterungen aus dem Buch (Jupyter-Notebooks) Vorstellung von Bibliotheken (Tensor Flow/Keras, PyTorch) Deep Learning verändert unseren Alltag. Dieser Ansatz für maschinelles Lernen erzielt bahnbrechende Ergebnisse in einigen der bekanntesten Anwendungen von heute, in Unternehmen von Google bis Tesla, Facebook bis Apple. Tausende von technischen Fachkräften und Studenten wollen seine Möglichkeiten einsetzen, aber frühere Bücher über Deep Learning waren oft nicht intuitiv, unzugänglich und trocken. John Krohn, Grant Beylefeld und Aglaé Bassens bieten Ihnen eine einzigartige visuelle, intuitive und verständliche Einführung in Techniken und Anwendungen von Deep Learning. Mit den farbenfrohen Illustrationen und eingängigen Erläuterungen von "Deep Learning illustriert" gelingt Ihnen ein einfacher Zugang zum Aufbau von Deep-Learning-Modellen, und bringt ihnen beim Lernen mehr Spaß. Der erste Teil des Buches erklärt, was Deep Learning ist, warum es so allgegenwärtig geworden ist und wie es mit Konzepten und Terminologien wie künstlicher Intelligenz, Machine Learning oder künstlichen neuronalen Netzen interagiert. Dabei verwenden die Autoren leicht verständliche Analogien, lebendige Grafiken und viele Beispiele. Auf dieser Grundlage präsentieren die Autoren eine praktische Referenz und ein Tutorial zur Anwendung eines breiten Spektrums bewährter Techniken des Deep Learning. Die wesentliche Theorie wird mit so wenig Mathematik wie möglich behandelt und mit praktischem Python-Code beleuchtet. Praktische Beispiele zum Ausprobieren, die kostenfrei online verfügbar sind (Jupyter-Notebooks), machen Ihnen die Theorie begreiflich. So erlangen Sie ein pragmatisches Verständnis aller wichtigen Deep-Learning-Ansätze und ihrer Anwendungen: Machine Vision, Natural Language Processing, Bilderzeugung und Spielalgorithmen. Um Ihnen zu helfen, mehr in kürzerer Zeit zu erreichen, stellen die Autoren mehrere der heute am weitesten verbreiteten und innovativsten Deep-Learning-Bibliotheken vor, darunter: - TensorFlow und seine High-Level-API, Keras - PyTorch - High-Level-Coach, eine TensorFlow-API, die die Komplexität, die typischerweise mit der Entwicklung von Deep Reinforcement Learning-Algorithmen verbunden ist, abstrahiert.
Aktualisiert: 2023-05-08
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-08
> findR *

Praxiseinstieg Deep Learning

Praxiseinstieg Deep Learning von Wartala,  Ramon
Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen
Aktualisiert: 2023-05-08
> findR *

Praxiseinstieg Deep Learning

Praxiseinstieg Deep Learning von Wartala,  Ramon
Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen
Aktualisiert: 2023-05-08
> findR *

Praxiseinstieg Deep Learning

Praxiseinstieg Deep Learning von Wartala,  Ramon
Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen
Aktualisiert: 2023-05-08
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-08
> findR *

Deep Learning illustriert

Deep Learning illustriert von Bassens,  Aglaé, Beyleveld,  Grant, Krohn,  Jon, Lichtenberg,  Kathrin
Deep Learning begreifen und einsetzen Einführung in verwandte Themen wie Künstliche Intelligenz, Machine Learning und Neuronale Netze viele Illustrationen, verständlich erklärt begleitendes online-Material zum Ausprobieren der Erläuterungen aus dem Buch (Jupyter-Notebooks) Vorstellung von Bibliotheken (Tensor Flow/Keras, PyTorch) Deep Learning verändert unseren Alltag. Dieser Ansatz für maschinelles Lernen erzielt bahnbrechende Ergebnisse in einigen der bekanntesten Anwendungen von heute, in Unternehmen von Google bis Tesla, Facebook bis Apple. Tausende von technischen Fachkräften und Studenten wollen seine Möglichkeiten einsetzen, aber frühere Bücher über Deep Learning waren oft nicht intuitiv, unzugänglich und trocken. John Krohn, Grant Beylefeld und Aglaé Bassens bieten Ihnen eine einzigartige visuelle, intuitive und verständliche Einführung in Techniken und Anwendungen von Deep Learning. Mit den farbenfrohen Illustrationen und eingängigen Erläuterungen von "Deep Learning illustriert" gelingt Ihnen ein einfacher Zugang zum Aufbau von Deep-Learning-Modellen, und bringt ihnen beim Lernen mehr Spaß. Der erste Teil des Buches erklärt, was Deep Learning ist, warum es so allgegenwärtig geworden ist und wie es mit Konzepten und Terminologien wie künstlicher Intelligenz, Machine Learning oder künstlichen neuronalen Netzen interagiert. Dabei verwenden die Autoren leicht verständliche Analogien, lebendige Grafiken und viele Beispiele. Auf dieser Grundlage präsentieren die Autoren eine praktische Referenz und ein Tutorial zur Anwendung eines breiten Spektrums bewährter Techniken des Deep Learning. Die wesentliche Theorie wird mit so wenig Mathematik wie möglich behandelt und mit praktischem Python-Code beleuchtet. Praktische Beispiele zum Ausprobieren, die kostenfrei online verfügbar sind (Jupyter-Notebooks), machen Ihnen die Theorie begreiflich. So erlangen Sie ein pragmatisches Verständnis aller wichtigen Deep-Learning-Ansätze und ihrer Anwendungen: Machine Vision, Natural Language Processing, Bilderzeugung und Spielalgorithmen. Um Ihnen zu helfen, mehr in kürzerer Zeit zu erreichen, stellen die Autoren mehrere der heute am weitesten verbreiteten und innovativsten Deep-Learning-Bibliotheken vor, darunter: - TensorFlow und seine High-Level-API, Keras - PyTorch - High-Level-Coach, eine TensorFlow-API, die die Komplexität, die typischerweise mit der Entwicklung von Deep Reinforcement Learning-Algorithmen verbunden ist, abstrahiert.
Aktualisiert: 2023-05-08
> findR *

Deep Learning illustriert

Deep Learning illustriert von Bassens,  Aglaé, Beyleveld,  Grant, Krohn,  Jon, Lichtenberg,  Kathrin
Deep Learning begreifen und einsetzen Einführung in verwandte Themen wie Künstliche Intelligenz, Machine Learning und Neuronale Netze viele Illustrationen, verständlich erklärt begleitendes online-Material zum Ausprobieren der Erläuterungen aus dem Buch (Jupyter-Notebooks) Vorstellung von Bibliotheken (Tensor Flow/Keras, PyTorch) Deep Learning verändert unseren Alltag. Dieser Ansatz für maschinelles Lernen erzielt bahnbrechende Ergebnisse in einigen der bekanntesten Anwendungen von heute, in Unternehmen von Google bis Tesla, Facebook bis Apple. Tausende von technischen Fachkräften und Studenten wollen seine Möglichkeiten einsetzen, aber frühere Bücher über Deep Learning waren oft nicht intuitiv, unzugänglich und trocken. John Krohn, Grant Beylefeld und Aglaé Bassens bieten Ihnen eine einzigartige visuelle, intuitive und verständliche Einführung in Techniken und Anwendungen von Deep Learning. Mit den farbenfrohen Illustrationen und eingängigen Erläuterungen von "Deep Learning illustriert" gelingt Ihnen ein einfacher Zugang zum Aufbau von Deep-Learning-Modellen, und bringt ihnen beim Lernen mehr Spaß. Der erste Teil des Buches erklärt, was Deep Learning ist, warum es so allgegenwärtig geworden ist und wie es mit Konzepten und Terminologien wie künstlicher Intelligenz, Machine Learning oder künstlichen neuronalen Netzen interagiert. Dabei verwenden die Autoren leicht verständliche Analogien, lebendige Grafiken und viele Beispiele. Auf dieser Grundlage präsentieren die Autoren eine praktische Referenz und ein Tutorial zur Anwendung eines breiten Spektrums bewährter Techniken des Deep Learning. Die wesentliche Theorie wird mit so wenig Mathematik wie möglich behandelt und mit praktischem Python-Code beleuchtet. Praktische Beispiele zum Ausprobieren, die kostenfrei online verfügbar sind (Jupyter-Notebooks), machen Ihnen die Theorie begreiflich. So erlangen Sie ein pragmatisches Verständnis aller wichtigen Deep-Learning-Ansätze und ihrer Anwendungen: Machine Vision, Natural Language Processing, Bilderzeugung und Spielalgorithmen. Um Ihnen zu helfen, mehr in kürzerer Zeit zu erreichen, stellen die Autoren mehrere der heute am weitesten verbreiteten und innovativsten Deep-Learning-Bibliotheken vor, darunter: - TensorFlow und seine High-Level-API, Keras - PyTorch - High-Level-Coach, eine TensorFlow-API, die die Komplexität, die typischerweise mit der Entwicklung von Deep Reinforcement Learning-Algorithmen verbunden ist, abstrahiert.
Aktualisiert: 2023-05-08
> findR *

Praxiseinstieg Deep Learning

Praxiseinstieg Deep Learning von Wartala,  Ramon
Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen
Aktualisiert: 2023-05-05
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-05
> findR *

Deep Learning illustriert

Deep Learning illustriert von Bassens,  Aglaé, Beyleveld,  Grant, Krohn,  Jon, Lichtenberg,  Kathrin
Deep Learning begreifen und einsetzen Einführung in verwandte Themen wie Künstliche Intelligenz, Machine Learning und Neuronale Netze viele Illustrationen, verständlich erklärt begleitendes online-Material zum Ausprobieren der Erläuterungen aus dem Buch (Jupyter-Notebooks) Vorstellung von Bibliotheken (Tensor Flow/Keras, PyTorch) Deep Learning verändert unseren Alltag. Dieser Ansatz für maschinelles Lernen erzielt bahnbrechende Ergebnisse in einigen der bekanntesten Anwendungen von heute, in Unternehmen von Google bis Tesla, Facebook bis Apple. Tausende von technischen Fachkräften und Studenten wollen seine Möglichkeiten einsetzen, aber frühere Bücher über Deep Learning waren oft nicht intuitiv, unzugänglich und trocken. John Krohn, Grant Beylefeld und Aglaé Bassens bieten Ihnen eine einzigartige visuelle, intuitive und verständliche Einführung in Techniken und Anwendungen von Deep Learning. Mit den farbenfrohen Illustrationen und eingängigen Erläuterungen von "Deep Learning illustriert" gelingt Ihnen ein einfacher Zugang zum Aufbau von Deep-Learning-Modellen, und bringt ihnen beim Lernen mehr Spaß. Der erste Teil des Buches erklärt, was Deep Learning ist, warum es so allgegenwärtig geworden ist und wie es mit Konzepten und Terminologien wie künstlicher Intelligenz, Machine Learning oder künstlichen neuronalen Netzen interagiert. Dabei verwenden die Autoren leicht verständliche Analogien, lebendige Grafiken und viele Beispiele. Auf dieser Grundlage präsentieren die Autoren eine praktische Referenz und ein Tutorial zur Anwendung eines breiten Spektrums bewährter Techniken des Deep Learning. Die wesentliche Theorie wird mit so wenig Mathematik wie möglich behandelt und mit praktischem Python-Code beleuchtet. Praktische Beispiele zum Ausprobieren, die kostenfrei online verfügbar sind (Jupyter-Notebooks), machen Ihnen die Theorie begreiflich. So erlangen Sie ein pragmatisches Verständnis aller wichtigen Deep-Learning-Ansätze und ihrer Anwendungen: Machine Vision, Natural Language Processing, Bilderzeugung und Spielalgorithmen. Um Ihnen zu helfen, mehr in kürzerer Zeit zu erreichen, stellen die Autoren mehrere der heute am weitesten verbreiteten und innovativsten Deep-Learning-Bibliotheken vor, darunter: - TensorFlow und seine High-Level-API, Keras - PyTorch - High-Level-Coach, eine TensorFlow-API, die die Komplexität, die typischerweise mit der Entwicklung von Deep Reinforcement Learning-Algorithmen verbunden ist, abstrahiert.
Aktualisiert: 2023-05-05
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-05
> findR *

Praxiseinstieg Deep Learning

Praxiseinstieg Deep Learning von Wartala,  Ramon
Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen
Aktualisiert: 2023-05-05
> findR *

Deep Learning Kochbuch

Deep Learning Kochbuch von Fraaß,  Marcus, Osinga,  Douwe
Lassen Sie sich von Deep Learning nicht abschrecken! Dank Frameworks wie Keras und TensorFlow ist der schnelle Einstieg in die Entwicklung von Deep-Learning-Anwendungen nun auch für Softwareentwickler ohne umfassende Machine-Learning-Kenntnisse möglich. Mit den Rezepten aus diesem Buch lernen Sie, typische Aufgabenstellungen des Deep Learning zu lösen, wie etwa die Klassifizierung und Generierung von Texten, Bildern und Musik. Jedes Kapitel behandelt ein Projekt, wie z.B. das Trainieren eines Empfehlungssystems für Musik. Schritt für Schritt wird gezeigt, wie das jeweilige Projekt umgesetzt wird. Darüber hinaus beschreibt der Autor Douwe Osinga zahlreiche Techniken, die Ihnen helfen, wenn Sie einmal nicht mehr weiterwissen. Alle Codebeispiele sind in Python geschrieben und auf GitHub als Python-Notebooks frei verfügbar. Aus dem Inhalt: - Entwickeln Sie Deep-Learning-Anwendungen, die Nutzern einen echten Mehrwert bieten - Berechnen Sie Ähnlichkeiten von Texten mithilfe von Word-Embeddings - Erstellen Sie ein Empfehlungssystem für Filme basierend auf Wikipedia-Links - Visualisieren Sie die internen Vorgänge einer künstlichen Intelligenz, um nachvollziehen zu können, wie diese arbeitet - Entwickeln Sie ein Modell, das passende Emojis für Textpassagen vorschlägt - Realisieren Sie einen Reverse-Image-Search-Dienst mithilfe von vortrainierten Netzwerken - Vergleichen Sie, wie Generative Adversarial Networks, Autoencoder und LSTM-Netzwerke Icons erzeugen - Trainieren Sie ein Klassifikationsmodell für Musikstile und lassen Sie es Musikstücke dementsprechend zuordnen
Aktualisiert: 2023-05-05
> findR *
MEHR ANZEIGEN

Bücher zum Thema ComputerVision

Sie suchen ein Buch über ComputerVision? Bei Buch findr finden Sie eine große Auswahl Bücher zum Thema ComputerVision. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher zum Thema ComputerVision im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zum Thema ComputerVision einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.

ComputerVision - Große Auswahl Bücher bei Buch findr

Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum Thema ComputerVision, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Unter ComputerVision und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.