Predictive Control under Uncertainty

Predictive Control under Uncertainty von Lorenzen,  Matthias
This thesis addresses constrained control of systems under stochastic disturbances and model uncertainty. In particular, stochastic and adaptive model predictive control (MPC) algorithms that solve such problems are presented and studied. Given a stochastic disturbance model, the focus is put on chance constraints, tractable approximations, and their implication on feasibility of the online optimization in a receding horizon framework. For systems with model uncertainty, online parameter identification to reduce conservatism and improve closed-loop performance is addressed. More specifically, building upon the analysis of conceptual aspects, we develop computational approaches for linear systems with additive and multiplicative disturbances. The analysis of a non-conservative, computationally tractable relaxation of chance constraints leads to an important separation of sufficient conditions for feasibility and stability. The latter is of particular interest for rigorously applying approximations, such as finite sample approximations, to solve the online stochastic optimal control problem. We discuss the differences between online and offline sampling approximations and, for systems that are linear in the state and input variables, provide explicit bounds on the sample complexity to guarantee satisfaction of chance constraints with a user chosen confidence. The proposed algorithms provide rigorous guarantees for relevant properties like feasibility of the online optimization, constraint satisfaction, and convergence of the closed-loop system.
Aktualisiert: 2023-05-15
> findR *

Predictive Control under Uncertainty

Predictive Control under Uncertainty von Lorenzen,  Matthias
This thesis addresses constrained control of systems under stochastic disturbances and model uncertainty. In particular, stochastic and adaptive model predictive control (MPC) algorithms that solve such problems are presented and studied. Given a stochastic disturbance model, the focus is put on chance constraints, tractable approximations, and their implication on feasibility of the online optimization in a receding horizon framework. For systems with model uncertainty, online parameter identification to reduce conservatism and improve closed-loop performance is addressed. More specifically, building upon the analysis of conceptual aspects, we develop computational approaches for linear systems with additive and multiplicative disturbances. The analysis of a non-conservative, computationally tractable relaxation of chance constraints leads to an important separation of sufficient conditions for feasibility and stability. The latter is of particular interest for rigorously applying approximations, such as finite sample approximations, to solve the online stochastic optimal control problem. We discuss the differences between online and offline sampling approximations and, for systems that are linear in the state and input variables, provide explicit bounds on the sample complexity to guarantee satisfaction of chance constraints with a user chosen confidence. The proposed algorithms provide rigorous guarantees for relevant properties like feasibility of the online optimization, constraint satisfaction, and convergence of the closed-loop system.
Aktualisiert: 2023-04-17
> findR *
MEHR ANZEIGEN

Bücher zum Thema Model Predictive Control (Modellbasierte Prädiktive Regelung)

Sie suchen ein Buch über Model Predictive Control (Modellbasierte Prädiktive Regelung)? Bei Buch findr finden Sie eine große Auswahl Bücher zum Thema Model Predictive Control (Modellbasierte Prädiktive Regelung). Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher zum Thema Model Predictive Control (Modellbasierte Prädiktive Regelung) im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zum Thema Model Predictive Control (Modellbasierte Prädiktive Regelung) einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.

Model Predictive Control (Modellbasierte Prädiktive Regelung) - Große Auswahl Bücher bei Buch findr

Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum Thema Model Predictive Control (Modellbasierte Prädiktive Regelung), die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Unter Model Predictive Control (Modellbasierte Prädiktive Regelung) und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.