Die 5. Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Neu sind Abschnitte zu Molekularen Funktionseinheiten, Optischer Spektroskopie und Elektrolumineszenz. 133 Aufgaben vervollständigen das Buch. Die dazugehörigen Lösungen können im Internet abgerufen werden.
Aktualisiert: 2023-07-02
> findR *
Die 5. Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Neu sind Abschnitte zu Molekularen Funktionseinheiten, Optischer Spektroskopie und Elektrolumineszenz. 133 Aufgaben vervollständigen das Buch. Die dazugehörigen Lösungen können im Internet abgerufen werden.
Aktualisiert: 2023-07-02
> findR *
Die Jahrtausendwende gilt als Beginn der vierten industriellen Revolution, welche auch als Industrie 4.0 bezeichnet wird. Der Begriff Industrie 4.0 wurde erstmals im Rahmen der HANNO-VER MESSE 2011 an die Öffentlichkeit herangetragen. Im Kern beschreibt diese Revolution die intelligente Vernetzung der industriellen Produktion durch Informations- und Kommunikationstechnologie. Die hierfür notwendige Voraussetzung ist die umfassende Digitalisierung von Informationen. Zwischen den Jahren 1986 und 2000 ist der Anteil an digitalen Informationen von 0,8% auf 25% gestiegen und hat im Jahr 2007 einen Anteil von 94% erreicht. Die mit der vierten industriellen Revolution einhergehenden Technologien wie die Blockchain, die fünfte Mobilfunkgeneration (5G) oder das autonome Fahren, werden zusätzliche gigantische Daten-mengen (Big Data) generieren, deren Verarbeitung eine große Kapazität an Rechenleistung nötig macht.
Zeitgleich ist absehbar, dass die silizium-basierte Halbleitertechnik an ihre physikalischen Grenzen stößt, da der quantenmechanische Tunneleffekt eine weitere Miniaturisierung der Chips verhindert. Im Jahre 1965 formulierte Gordon Moore eine Prognose, wonach sich die Anzahl der Transistoren in einem integrierten Schaltkreis bestimmter Größe jedes Jahr verdoppeln wird, was auch als Verdopplung der Leistung interpretiert werden kann. Im Jahre 1975 musste er den Zeitraum auf zwei Jahre korrigieren. Diese Prognose wurde später als „Mooresches Gesetz” berühmt und galt den großen Chipherstellern über 50 Jahre lang als Fahrplan. Unter dem Motto „More than Moore” wird intensiv an Alternativen zur silizium-basierten Halbleitertechnik geforscht. Dabei ist insbesondere die Entwicklung von Transitoren auf molekularer Basis ein vielversprechender Ansatz, um darauf die Entwicklung von z. B. Quantencomputern zu stützen.
Die jüngsten Entwicklungen auf dem Gebiet der molekularen Elektronik und der Spintronik haben es ermöglicht, das Potenzial von Molekülen in Transportversuchen zu untersuchen. Es existiert eine Vielzahl von Ansätzen, um auf der Basis von funktionalen Molekülen Leitungen, Logikgatte, Maschinen und Schalter der silizium-basierten Technologie zu ersetzen. Molekulare Schalter funktionieren nach unterschiedlichen Mechanismen und sind von großem Interesse für die grundlegende Forschung und für zukünftige Technologien. In diesem Zusammenhang ist das Phänomen des Spin-Crossovers, welches bei bestimmten metallorganischen Komplexen beobachtet werden kann, von besonderer Bedeutung. Spin-Crossover-Verbindungen können durch externe Stimulation wie durch Temperatur, Druck, Licht oder elektrische Felder zwischen meist zwei unterschiedlichen elektrischen Zuständen geschaltet werden. Besonders hervorzuheben ist, dass Spin-Crossover-Verbindungen bereits bei Raumtemperatur operieren können und somit sehr gut für praktische Anwendungen geeignet sind. Um aber auf diese Eigenschaften der Moleküle zugreifen zu können, ist es erforderlich, entsprechende Hybrid-Materialien zu synthetisieren. Eines der Hauptprobleme bei der Synthese von hybriden Materialien mit molekularen und anorganischen Verbindungen ist jedoch der Verlust eben jener begehrten Eigenschaften, welche sich oftmals durch das Einbringen von weiteren funktionalen Gruppen verändern und sogar ganz verloren gehen können.
Aktualisiert: 2023-06-30
> findR *
Die Jahrtausendwende gilt als Beginn der vierten industriellen Revolution, welche auch als Industrie 4.0 bezeichnet wird. Der Begriff Industrie 4.0 wurde erstmals im Rahmen der HANNO-VER MESSE 2011 an die Öffentlichkeit herangetragen. Im Kern beschreibt diese Revolution die intelligente Vernetzung der industriellen Produktion durch Informations- und Kommunikationstechnologie. Die hierfür notwendige Voraussetzung ist die umfassende Digitalisierung von Informationen. Zwischen den Jahren 1986 und 2000 ist der Anteil an digitalen Informationen von 0,8% auf 25% gestiegen und hat im Jahr 2007 einen Anteil von 94% erreicht. Die mit der vierten industriellen Revolution einhergehenden Technologien wie die Blockchain, die fünfte Mobilfunkgeneration (5G) oder das autonome Fahren, werden zusätzliche gigantische Daten-mengen (Big Data) generieren, deren Verarbeitung eine große Kapazität an Rechenleistung nötig macht.
Zeitgleich ist absehbar, dass die silizium-basierte Halbleitertechnik an ihre physikalischen Grenzen stößt, da der quantenmechanische Tunneleffekt eine weitere Miniaturisierung der Chips verhindert. Im Jahre 1965 formulierte Gordon Moore eine Prognose, wonach sich die Anzahl der Transistoren in einem integrierten Schaltkreis bestimmter Größe jedes Jahr verdoppeln wird, was auch als Verdopplung der Leistung interpretiert werden kann. Im Jahre 1975 musste er den Zeitraum auf zwei Jahre korrigieren. Diese Prognose wurde später als „Mooresches Gesetz” berühmt und galt den großen Chipherstellern über 50 Jahre lang als Fahrplan. Unter dem Motto „More than Moore” wird intensiv an Alternativen zur silizium-basierten Halbleitertechnik geforscht. Dabei ist insbesondere die Entwicklung von Transitoren auf molekularer Basis ein vielversprechender Ansatz, um darauf die Entwicklung von z. B. Quantencomputern zu stützen.
Die jüngsten Entwicklungen auf dem Gebiet der molekularen Elektronik und der Spintronik haben es ermöglicht, das Potenzial von Molekülen in Transportversuchen zu untersuchen. Es existiert eine Vielzahl von Ansätzen, um auf der Basis von funktionalen Molekülen Leitungen, Logikgatte, Maschinen und Schalter der silizium-basierten Technologie zu ersetzen. Molekulare Schalter funktionieren nach unterschiedlichen Mechanismen und sind von großem Interesse für die grundlegende Forschung und für zukünftige Technologien. In diesem Zusammenhang ist das Phänomen des Spin-Crossovers, welches bei bestimmten metallorganischen Komplexen beobachtet werden kann, von besonderer Bedeutung. Spin-Crossover-Verbindungen können durch externe Stimulation wie durch Temperatur, Druck, Licht oder elektrische Felder zwischen meist zwei unterschiedlichen elektrischen Zuständen geschaltet werden. Besonders hervorzuheben ist, dass Spin-Crossover-Verbindungen bereits bei Raumtemperatur operieren können und somit sehr gut für praktische Anwendungen geeignet sind. Um aber auf diese Eigenschaften der Moleküle zugreifen zu können, ist es erforderlich, entsprechende Hybrid-Materialien zu synthetisieren. Eines der Hauptprobleme bei der Synthese von hybriden Materialien mit molekularen und anorganischen Verbindungen ist jedoch der Verlust eben jener begehrten Eigenschaften, welche sich oftmals durch das Einbringen von weiteren funktionalen Gruppen verändern und sogar ganz verloren gehen können.
Aktualisiert: 2023-06-30
> findR *
Die Jahrtausendwende gilt als Beginn der vierten industriellen Revolution, welche auch als Industrie 4.0 bezeichnet wird. Der Begriff Industrie 4.0 wurde erstmals im Rahmen der HANNO-VER MESSE 2011 an die Öffentlichkeit herangetragen. Im Kern beschreibt diese Revolution die intelligente Vernetzung der industriellen Produktion durch Informations- und Kommunikationstechnologie. Die hierfür notwendige Voraussetzung ist die umfassende Digitalisierung von Informationen. Zwischen den Jahren 1986 und 2000 ist der Anteil an digitalen Informationen von 0,8% auf 25% gestiegen und hat im Jahr 2007 einen Anteil von 94% erreicht. Die mit der vierten industriellen Revolution einhergehenden Technologien wie die Blockchain, die fünfte Mobilfunkgeneration (5G) oder das autonome Fahren, werden zusätzliche gigantische Daten-mengen (Big Data) generieren, deren Verarbeitung eine große Kapazität an Rechenleistung nötig macht.
Zeitgleich ist absehbar, dass die silizium-basierte Halbleitertechnik an ihre physikalischen Grenzen stößt, da der quantenmechanische Tunneleffekt eine weitere Miniaturisierung der Chips verhindert. Im Jahre 1965 formulierte Gordon Moore eine Prognose, wonach sich die Anzahl der Transistoren in einem integrierten Schaltkreis bestimmter Größe jedes Jahr verdoppeln wird, was auch als Verdopplung der Leistung interpretiert werden kann. Im Jahre 1975 musste er den Zeitraum auf zwei Jahre korrigieren. Diese Prognose wurde später als „Mooresches Gesetz” berühmt und galt den großen Chipherstellern über 50 Jahre lang als Fahrplan. Unter dem Motto „More than Moore” wird intensiv an Alternativen zur silizium-basierten Halbleitertechnik geforscht. Dabei ist insbesondere die Entwicklung von Transitoren auf molekularer Basis ein vielversprechender Ansatz, um darauf die Entwicklung von z. B. Quantencomputern zu stützen.
Die jüngsten Entwicklungen auf dem Gebiet der molekularen Elektronik und der Spintronik haben es ermöglicht, das Potenzial von Molekülen in Transportversuchen zu untersuchen. Es existiert eine Vielzahl von Ansätzen, um auf der Basis von funktionalen Molekülen Leitungen, Logikgatte, Maschinen und Schalter der silizium-basierten Technologie zu ersetzen. Molekulare Schalter funktionieren nach unterschiedlichen Mechanismen und sind von großem Interesse für die grundlegende Forschung und für zukünftige Technologien. In diesem Zusammenhang ist das Phänomen des Spin-Crossovers, welches bei bestimmten metallorganischen Komplexen beobachtet werden kann, von besonderer Bedeutung. Spin-Crossover-Verbindungen können durch externe Stimulation wie durch Temperatur, Druck, Licht oder elektrische Felder zwischen meist zwei unterschiedlichen elektrischen Zuständen geschaltet werden. Besonders hervorzuheben ist, dass Spin-Crossover-Verbindungen bereits bei Raumtemperatur operieren können und somit sehr gut für praktische Anwendungen geeignet sind. Um aber auf diese Eigenschaften der Moleküle zugreifen zu können, ist es erforderlich, entsprechende Hybrid-Materialien zu synthetisieren. Eines der Hauptprobleme bei der Synthese von hybriden Materialien mit molekularen und anorganischen Verbindungen ist jedoch der Verlust eben jener begehrten Eigenschaften, welche sich oftmals durch das Einbringen von weiteren funktionalen Gruppen verändern und sogar ganz verloren gehen können.
Aktualisiert: 2023-06-30
> findR *
Die 5. Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Neu sind Abschnitte zu Molekularen Funktionseinheiten, Optischer Spektroskopie und Elektrolumineszenz. 133 Aufgaben vervollständigen das Buch. Die dazugehörigen Lösungen können im Internet abgerufen werden.
Aktualisiert: 2023-06-26
> findR *
Die 5. Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Neu sind Abschnitte zu Molekularen Funktionseinheiten, Optischer Spektroskopie und Elektrolumineszenz. 133 Aufgaben vervollständigen das Buch. Die dazugehörigen Lösungen können im Internet abgerufen werden.
Aktualisiert: 2023-06-26
> findR *
Die 5. Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Neu sind Abschnitte zu Molekularen Funktionseinheiten, Optischer Spektroskopie und Elektrolumineszenz. 133 Aufgaben vervollständigen das Buch. Die dazugehörigen Lösungen können im Internet abgerufen werden.
Aktualisiert: 2023-06-26
> findR *
Die Jahrtausendwende gilt als Beginn der vierten industriellen Revolution, welche auch als Industrie 4.0 bezeichnet wird. Der Begriff Industrie 4.0 wurde erstmals im Rahmen der HANNO-VER MESSE 2011 an die Öffentlichkeit herangetragen. Im Kern beschreibt diese Revolution die intelligente Vernetzung der industriellen Produktion durch Informations- und Kommunikationstechnologie. Die hierfür notwendige Voraussetzung ist die umfassende Digitalisierung von Informationen. Zwischen den Jahren 1986 und 2000 ist der Anteil an digitalen Informationen von 0,8% auf 25% gestiegen und hat im Jahr 2007 einen Anteil von 94% erreicht. Die mit der vierten industriellen Revolution einhergehenden Technologien wie die Blockchain, die fünfte Mobilfunkgeneration (5G) oder das autonome Fahren, werden zusätzliche gigantische Daten-mengen (Big Data) generieren, deren Verarbeitung eine große Kapazität an Rechenleistung nötig macht.
Zeitgleich ist absehbar, dass die silizium-basierte Halbleitertechnik an ihre physikalischen Grenzen stößt, da der quantenmechanische Tunneleffekt eine weitere Miniaturisierung der Chips verhindert. Im Jahre 1965 formulierte Gordon Moore eine Prognose, wonach sich die Anzahl der Transistoren in einem integrierten Schaltkreis bestimmter Größe jedes Jahr verdoppeln wird, was auch als Verdopplung der Leistung interpretiert werden kann. Im Jahre 1975 musste er den Zeitraum auf zwei Jahre korrigieren. Diese Prognose wurde später als „Mooresches Gesetz” berühmt und galt den großen Chipherstellern über 50 Jahre lang als Fahrplan. Unter dem Motto „More than Moore” wird intensiv an Alternativen zur silizium-basierten Halbleitertechnik geforscht. Dabei ist insbesondere die Entwicklung von Transitoren auf molekularer Basis ein vielversprechender Ansatz, um darauf die Entwicklung von z. B. Quantencomputern zu stützen.
Die jüngsten Entwicklungen auf dem Gebiet der molekularen Elektronik und der Spintronik haben es ermöglicht, das Potenzial von Molekülen in Transportversuchen zu untersuchen. Es existiert eine Vielzahl von Ansätzen, um auf der Basis von funktionalen Molekülen Leitungen, Logikgatte, Maschinen und Schalter der silizium-basierten Technologie zu ersetzen. Molekulare Schalter funktionieren nach unterschiedlichen Mechanismen und sind von großem Interesse für die grundlegende Forschung und für zukünftige Technologien. In diesem Zusammenhang ist das Phänomen des Spin-Crossovers, welches bei bestimmten metallorganischen Komplexen beobachtet werden kann, von besonderer Bedeutung. Spin-Crossover-Verbindungen können durch externe Stimulation wie durch Temperatur, Druck, Licht oder elektrische Felder zwischen meist zwei unterschiedlichen elektrischen Zuständen geschaltet werden. Besonders hervorzuheben ist, dass Spin-Crossover-Verbindungen bereits bei Raumtemperatur operieren können und somit sehr gut für praktische Anwendungen geeignet sind. Um aber auf diese Eigenschaften der Moleküle zugreifen zu können, ist es erforderlich, entsprechende Hybrid-Materialien zu synthetisieren. Eines der Hauptprobleme bei der Synthese von hybriden Materialien mit molekularen und anorganischen Verbindungen ist jedoch der Verlust eben jener begehrten Eigenschaften, welche sich oftmals durch das Einbringen von weiteren funktionalen Gruppen verändern und sogar ganz verloren gehen können.
Aktualisiert: 2020-07-11
> findR *
führt gemeinsam in die Grundlagen der Gebiete ein, wie es zum Verständnis der physikalischen Eigenschaften von Molekülen und der chemischen Bindung erforderlich ist. Aufbauend auf Grundkenntnissen der (von den gleichen Autoren) vermittelt es den Studenten der Physik, der Physikalischen Chemie und der Theoretischen Chemie die experimentellen und theoretischen Grundlagen. Die zweite Auflage geht neben neueren theoretischen Ansätzen auf aktuelle Entwicklungen ein wie hochauflösende Zweiphotonen-, Ultrakurzzeit-, und Photoelektronenspektroskopie, optische Untersuchung einzelner Moleküle in kondensierter Phase, Elektrolumineszenz und Leuchtdioden.
Aktualisiert: 2023-03-14
> findR *
führt systematisch und leicht zugänglich in die Grundlagen der beiden Gebiete ein, wie es zum Verständnis der physikalischen Eigenschaften von Molekülen und der chemischen Bindung erforderlich ist. Aufbauend auf Grundkenntnissen aus der (von den gleichen Autoren) vermittelt es den Studenten der Physik, der Physikalischen Chemie und der Theoretischen Chemie die experimentellen und theoretischen Grundlagen und deren Wechselwirkung. Die vorliegende dritte Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Sie enthält nun auch 133 Übungsaufgaben mit vollständigen Lösungen zur Vertiefung und zum Selbststudium.
Aktualisiert: 2023-03-14
> findR *
Dieses Lehrbuch wendet sich an Studenten der Physik, der Physikalischen Chemie und der Theoretischen Chemie. Aufbauend auf Grundkenntnissen der Atom- und Quantenphysik vemitteln die Autoren den Stoff, der zum Grundwissen eines jeden Physikstudenten gehört. Für den Studenten der Chemie bedeuten die in diesem Buch vorgestellten Konzepte das theoretische Grundgerüst für sein Fachgebiet. Dieses Gerüst befähigt ihn, den ungeheuren Erfahrungsschatz der Chemie auf wenige Prinzipien, nämlich die der Quantentheorie, zurückzuführen. Zwei untrennbar miteinander verknüpfte Themenbereiche werden behandelt: die chemische Bindung und die physikalischen Eigenschaften der Moleküle. Erstmals behandelt ein Lehrbuch die Molekülphysik und Quantenchemie in dieser Kombination mit der Zielsetzung, das Grundlegende und Typische herauszuarbeiten, und so dem Studenten einen Überblick über dieses so wichtige und reizvolle Gebiet zu vermitteln. Darüber hinaus vermittelt das Buch Ausblicke auf neue Entwicklungen, etwa die Erforschung der Photosynthese, die Physik supramolekularer Funktionseinheiten und die molekulare Mikroelektronik.
Aktualisiert: 2022-03-24
> findR *
führt systematisch und leicht zugänglich in die Grundlagen der beiden Gebiete ein, wie es zum Verständnis der physikalischen Eigenschaften von Molekülen und der chemischen Bindung erforderlich ist. Aufbauend auf Grundkenntnissen aus der (von den gleichen Autoren) vermittelt es den Studenten der Physik, der Physikalischen Chemie und der Theoretischen Chemie die experimentellen und theoretischen Grundlagen und deren Wechselwirkung. Die vorliegende vierte Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Ebenso ist ein neues Kapitel zu Einzelmolekülen u. Einzelmolekül-Spektroskopie hinzugekommen. 133 Aufgaben vervollständigen das Buch. Die dazugehörigen Lösungen können im Internet abgerufen werden.
Aktualisiert: 2023-03-14
> findR *
Die 5. Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Neu sind Abschnitte zu Molekularen Funktionseinheiten, Optischer Spektroskopie und Elektrolumineszenz. 133 Aufgaben vervollständigen das Buch. Die dazugehörigen Lösungen können im Internet abgerufen werden.
Aktualisiert: 2022-05-01
> findR *
Die 5. Auflage wurde um wesentliche aktuelle Entwicklungen experimenteller Methoden und theoretischer Ansätze erweitert. Neu sind Abschnitte zu Molekularen Funktionseinheiten, Optischer Spektroskopie und Elektrolumineszenz. 133 Aufgaben vervollständigen das Buch. Die dazugehörigen Lösungen können im Internet abgerufen werden.
Aktualisiert: 2023-04-04
> findR *
MEHR ANZEIGEN
Bücher zum Thema molekulare Elektronik
Sie suchen ein Buch über molekulare Elektronik? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema molekulare Elektronik. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema molekulare Elektronik im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema molekulare Elektronik einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
molekulare Elektronik - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema molekulare Elektronik, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter molekulare Elektronik und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.