Der Quotienten-Differenzen-Algorithmus

Der Quotienten-Differenzen-Algorithmus von RUTISHAUSER
Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie § 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben.
Aktualisiert: 2023-07-03
> findR *

Der Quotienten-Differenzen-Algorithmus

Der Quotienten-Differenzen-Algorithmus von RUTISHAUSER
Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie § 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben.
Aktualisiert: 2023-07-03
> findR *

Der Quotienten-Differenzen-Algorithmus

Der Quotienten-Differenzen-Algorithmus von RUTISHAUSER
Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie § 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen'), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben.
Aktualisiert: 2023-07-03
> findR *

Zahlentheorie

Zahlentheorie von Leutbecher,  Armin
Auf der Grundlage der Mathematikkenntnisse des ersten Studienjahres bietet der Autor eine Einführung in die Zahlentheorie mit Schwerpunkt auf der elementaren und algebraischen Zahlentheorie. Das Buch wendet sich auch an Nichtspezialisten, denen es über die Zahlen frühzeitig den Weg in die Algebra öffnet. Angestrebte Ziele sind: Der Satz von Kronecker-Weber zur Krönung der Galois-Theorie, der Minkowskische Gitterpunktsatz, der Dirichletsche Primzahlsatz und die Bewertungstheorie der Körper.
Aktualisiert: 2023-07-02
> findR *

Zahlentheorie

Zahlentheorie von Leutbecher,  Armin
Auf der Grundlage der Mathematikkenntnisse des ersten Studienjahres bietet der Autor eine Einführung in die Zahlentheorie mit Schwerpunkt auf der elementaren und algebraischen Zahlentheorie. Das Buch wendet sich auch an Nichtspezialisten, denen es über die Zahlen frühzeitig den Weg in die Algebra öffnet. Angestrebte Ziele sind: Der Satz von Kronecker-Weber zur Krönung der Galois-Theorie, der Minkowskische Gitterpunktsatz, der Dirichletsche Primzahlsatz und die Bewertungstheorie der Körper.
Aktualisiert: 2023-07-02
> findR *

Zahlentheorie

Zahlentheorie von Leutbecher,  Armin
Auf der Grundlage der Mathematikkenntnisse des ersten Studienjahres bietet der Autor eine Einführung in die Zahlentheorie mit Schwerpunkt auf der elementaren und algebraischen Zahlentheorie. Das Buch wendet sich auch an Nichtspezialisten, denen es über die Zahlen frühzeitig den Weg in die Algebra öffnet. Angestrebte Ziele sind: Der Satz von Kronecker-Weber zur Krönung der Galois-Theorie, der Minkowskische Gitterpunktsatz, der Dirichletsche Primzahlsatz und die Bewertungstheorie der Körper.
Aktualisiert: 2023-07-02
> findR *

Arithmetik

Arithmetik von Knuth,  Donald E., Loos,  R.
Das Buch ist eine Übersetzung des vierten Kapitels der legendären Werkreihe "The Art of Computer Programming" von Donald E. Knuth in der neuesten Fassung. Es handelt sich um eine umfangreiche Einführung in die Computeralgebra, die den neuesten Stand der Forschung berücksichtigt. Donald E. Knuth versteht es, die Algorithmen didaktisch sehr geschickt und ohne Kompromisse bei der Strenge aufzubereiten. Das Buch enthält außerdem Hunderte von Aufgaben verschiedener Schwierigkeitsgrade mit Lösungen. Der Übersetzer, Prof. Dr. R. Loos, lehrt an der Universität Tübingen.
Aktualisiert: 2023-07-03
> findR *

Arithmetik

Arithmetik von Knuth,  Donald E., Loos,  R.
Das Buch ist eine Übersetzung des vierten Kapitels der legendären Werkreihe "The Art of Computer Programming" von Donald E. Knuth in der neuesten Fassung. Es handelt sich um eine umfangreiche Einführung in die Computeralgebra, die den neuesten Stand der Forschung berücksichtigt. Donald E. Knuth versteht es, die Algorithmen didaktisch sehr geschickt und ohne Kompromisse bei der Strenge aufzubereiten. Das Buch enthält außerdem Hunderte von Aufgaben verschiedener Schwierigkeitsgrade mit Lösungen. Der Übersetzer, Prof. Dr. R. Loos, lehrt an der Universität Tübingen.
Aktualisiert: 2023-07-03
> findR *
MEHR ANZEIGEN

Bücher zum Thema Polynome

Sie suchen ein Buch über Polynome? Bei Buch findr finden Sie eine große Auswahl Bücher zum Thema Polynome. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher zum Thema Polynome im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zum Thema Polynome einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.

Polynome - Große Auswahl Bücher bei Buch findr

Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum Thema Polynome, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Unter Polynome und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.