Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Algebra ist neben Analysis und Geometrie eine der tragenden Säulen der Schulmathe matik und der Mathematik überhaupt. Wir haben in diesem Band versucht, eine Aus wahl aus der klassischen Algebra und der elementaren Zahlentheorie zu treffen, die als Hintergrundinformation ftir den Mathematiklehrer am Gymnasium sinnvoll erscheint. Bei der ersten Bekanntschaft mit Algebra stehen das Zahlenrechnen und die Suche nach Lösungen ftir einfache Gleichungen im Vordergrund. Wir geben daher nach einer kurzen Darstellung der wichtigsten algebraischen Grundbegriffe einen vollständigen überblick über den Aufbau des Zahlsystems, wobei es uns darauf ankam, die Zahl bereichserweiterungen als Spezialfall allgemeiner algebraischer Konstruktionen heraus zuarbeiten. So zeigen wir die Gemeinsamkeiten bei der Konstruktion der ganzen und der rationalen Zahlen auf und gewinnen die reellen Zahlen und die komplexen Zahlen durch die allgemeinen Prozesse der Vervollständigung angeordneter Körper bzw. der Adjunktion von Nullstellen. Bei den Ausftihrungen über Gruppen legen wir besonderes Gewicht auf Beispiele ftir endliche Gruppen: Permutationsgruppen, Gruppen kleiner Ordnung, endliche Bewe gungsgruppen der Ebene. Einen zentralen Platz nimmt die ausftihrliche Behandlung der Teilbarkeitslehre ein. Neben den Anwendungen bei ganzen Zahlen und Polynomen gehen wir exemplarisch auf die Zahlentheorie des Ringes der ganzen Gaußschen Zahlen ein und zeigen, wie sich zahlentheoretische Aussagen über diesen Ring in Aussagen über Quadratsummen natürlicher Zahlen übersetzen lassen.
Aktualisiert: 2023-07-03
> findR *
Algebra ist neben Analysis und Geometrie eine der tragenden Säulen der Schulmathe matik und der Mathematik überhaupt. Wir haben in diesem Band versucht, eine Aus wahl aus der klassischen Algebra und der elementaren Zahlentheorie zu treffen, die als Hintergrundinformation ftir den Mathematiklehrer am Gymnasium sinnvoll erscheint. Bei der ersten Bekanntschaft mit Algebra stehen das Zahlenrechnen und die Suche nach Lösungen ftir einfache Gleichungen im Vordergrund. Wir geben daher nach einer kurzen Darstellung der wichtigsten algebraischen Grundbegriffe einen vollständigen überblick über den Aufbau des Zahlsystems, wobei es uns darauf ankam, die Zahl bereichserweiterungen als Spezialfall allgemeiner algebraischer Konstruktionen heraus zuarbeiten. So zeigen wir die Gemeinsamkeiten bei der Konstruktion der ganzen und der rationalen Zahlen auf und gewinnen die reellen Zahlen und die komplexen Zahlen durch die allgemeinen Prozesse der Vervollständigung angeordneter Körper bzw. der Adjunktion von Nullstellen. Bei den Ausftihrungen über Gruppen legen wir besonderes Gewicht auf Beispiele ftir endliche Gruppen: Permutationsgruppen, Gruppen kleiner Ordnung, endliche Bewe gungsgruppen der Ebene. Einen zentralen Platz nimmt die ausftihrliche Behandlung der Teilbarkeitslehre ein. Neben den Anwendungen bei ganzen Zahlen und Polynomen gehen wir exemplarisch auf die Zahlentheorie des Ringes der ganzen Gaußschen Zahlen ein und zeigen, wie sich zahlentheoretische Aussagen über diesen Ring in Aussagen über Quadratsummen natürlicher Zahlen übersetzen lassen.
Aktualisiert: 2023-07-03
> findR *
Algebra ist neben Analysis und Geometrie eine der tragenden Säulen der Schulmathe matik und der Mathematik überhaupt. Wir haben in diesem Band versucht, eine Aus wahl aus der klassischen Algebra und der elementaren Zahlentheorie zu treffen, die als Hintergrundinformation ftir den Mathematiklehrer am Gymnasium sinnvoll erscheint. Bei der ersten Bekanntschaft mit Algebra stehen das Zahlenrechnen und die Suche nach Lösungen ftir einfache Gleichungen im Vordergrund. Wir geben daher nach einer kurzen Darstellung der wichtigsten algebraischen Grundbegriffe einen vollständigen überblick über den Aufbau des Zahlsystems, wobei es uns darauf ankam, die Zahl bereichserweiterungen als Spezialfall allgemeiner algebraischer Konstruktionen heraus zuarbeiten. So zeigen wir die Gemeinsamkeiten bei der Konstruktion der ganzen und der rationalen Zahlen auf und gewinnen die reellen Zahlen und die komplexen Zahlen durch die allgemeinen Prozesse der Vervollständigung angeordneter Körper bzw. der Adjunktion von Nullstellen. Bei den Ausftihrungen über Gruppen legen wir besonderes Gewicht auf Beispiele ftir endliche Gruppen: Permutationsgruppen, Gruppen kleiner Ordnung, endliche Bewe gungsgruppen der Ebene. Einen zentralen Platz nimmt die ausftihrliche Behandlung der Teilbarkeitslehre ein. Neben den Anwendungen bei ganzen Zahlen und Polynomen gehen wir exemplarisch auf die Zahlentheorie des Ringes der ganzen Gaußschen Zahlen ein und zeigen, wie sich zahlentheoretische Aussagen über diesen Ring in Aussagen über Quadratsummen natürlicher Zahlen übersetzen lassen.
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-06-26
> findR *
Aktualisiert: 2022-03-11
> findR *
Aktualisiert: 2023-04-02
> findR *
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Aktualisiert: 2023-01-21
> findR *
Das vorliegende Buch ist aus Vorlesungen entstanden, die ich in den verflossenen Jahren laufend für Studenten der Wirtschaftswissenschaft zunächst in Münster und später in Würzburg gehalten habe. In die mo derne Betriebs- und Volkswirtschaft dringen mehr und mehr mathematische Methoden ein, und es gibt bereits eine umfangreiche mathematisch-wirt schaftswissenschaftliche Literatur. Diese Methoden betreffen nicht nur die Statistik und Ökonometrie, sondern auch die optimale Gestaltung wirt schaftlicher Prozesse in Großbetrieben. Während früher die explizite Be handlung solcher Aufgaben wegen der rechnerischen Schwierigkeiten nur in den allereinfachsten Fällen möglich war, stehen heute für die numerische Durchrechnung dieser Probleme elektronische Rechenmaschinen zur Ver fügung, die die Lösungsmöglichkeiten ins Ungeahnte gesteigert haben. Um die volks- und betriebswirtschaftlichen Probleme, die einer mathe matischen Behandlung zugänglich sind, verstehen und formulieren zu kön nen, bedarf der Volkswirt gewisser mathematischer Grundkenntnisse, die seinen Problemen angepaßt sind_ Vom mathematischen Standpunkt sind diese Teile der Mathematik oft elementar. Sie sind nicht wesentlich kompli zierter als die Mathematik, die ein Abiturient auf der höheren Schule erlernt. Diese Mathematik setzt auch keine speziellen Kenntnisse voraus, außer der Kenntnis der reellen Zahlen als Dezimalbrüche. Indessen fordert sie eine Reihe mathematischer Begriffsbildungen wie Determinanten, Matrizen, n,dimensionale Räume, konvexe Bereiche usw. , die es gestatten, Gesamtheiten von Zahlen zu betrachten und Rechnungen in einer Weise zu organisieren, wie es ohne diese Begriffe kaum möglich wäre. Der Hörer muß diese Begriffe erlernen und sich an sie gewöhnen, wenn er mit ihnen arbeiten will.
Aktualisiert: 2023-01-21
> findR *
Aktualisiert: 2023-02-17
> findR *
Aktualisiert: 2023-04-01
> findR *
Algebra ist neben Analysis und Geometrie eine der tragenden Säulen der Schulmathe matik und der Mathematik überhaupt. Wir haben in diesem Band versucht, eine Aus wahl aus der klassischen Algebra und der elementaren Zahlentheorie zu treffen, die als Hintergrundinformation ftir den Mathematiklehrer am Gymnasium sinnvoll erscheint. Bei der ersten Bekanntschaft mit Algebra stehen das Zahlenrechnen und die Suche nach Lösungen ftir einfache Gleichungen im Vordergrund. Wir geben daher nach einer kurzen Darstellung der wichtigsten algebraischen Grundbegriffe einen vollständigen überblick über den Aufbau des Zahlsystems, wobei es uns darauf ankam, die Zahl bereichserweiterungen als Spezialfall allgemeiner algebraischer Konstruktionen heraus zuarbeiten. So zeigen wir die Gemeinsamkeiten bei der Konstruktion der ganzen und der rationalen Zahlen auf und gewinnen die reellen Zahlen und die komplexen Zahlen durch die allgemeinen Prozesse der Vervollständigung angeordneter Körper bzw. der Adjunktion von Nullstellen. Bei den Ausftihrungen über Gruppen legen wir besonderes Gewicht auf Beispiele ftir endliche Gruppen: Permutationsgruppen, Gruppen kleiner Ordnung, endliche Bewe gungsgruppen der Ebene. Einen zentralen Platz nimmt die ausftihrliche Behandlung der Teilbarkeitslehre ein. Neben den Anwendungen bei ganzen Zahlen und Polynomen gehen wir exemplarisch auf die Zahlentheorie des Ringes der ganzen Gaußschen Zahlen ein und zeigen, wie sich zahlentheoretische Aussagen über diesen Ring in Aussagen über Quadratsummen natürlicher Zahlen übersetzen lassen.
Aktualisiert: 2023-01-22
> findR *
Ein Hauptanliegen des Ingenieurstudiums gilt der Umwandlung praktischer Probleme in mathematische Fragestellungen, der mathematischen Modellbildung. In diesem Sinne soll das vorliegende Buch Studenten der Ingenieurwissenschaften bzw. der Physik auf ihre spätere Berufstätigkeit vorbereiten. Behandelt wird der weitgehend standardisierte Stoff der Vorlesungen über Höhere Mathematik des ersten Studienjahres. Der Aufbau des Buches orientiert sich an den in derselben Reihe erschienenen Bänden und . Zu Beginn jedes Kapitels werden die erforderlichen Begriffe, Definitionen und Sätze vorgestellt: Leser anderer Lehrbücher dürften sich damit mühelos auch in diesem Aufgabenband zurechtfinden, Kenner obiger Bände mögen dies als Repetitorium oder Formelsammlung betrachten. Danach jeweils folgen die Aufgaben aus den unterschiedlichsten Anwendungsgebieten: Ingenieurwissenschaften, Physik, Chemie, Biologie, Medizin. Ausführliche Auflösungen aller Aufgaben enthält der zweite Teil des Buches, das sich auch zum Selbststudium und insbesondere zur Vorbereitung auf Klausuren eignet.
Aktualisiert: 2022-03-08
> findR *
Das vorliegende Brich über Funktionen einer reellen Veränderlichen ist der erste Teil einer dreibändigen Darstellung der Differential- und Integralrechnung. In den folgenden Bänden sollen Funktionen mehrerer Veränderlichen, gewöhnliche Differentialgleichungen und Integrations theorie behandelt werden. Das Werk ist aus Vorlesungen für Studienanfänger der Mathematik und Physik hervorgegangen. Dem einführenden Charakter dieser Vor lesungen gemäß soll auch das Buch einem Leser, der keine Vorkenntnisse in höherer Mathematik besitzt, die Gelegenheit geben, einen möglichst strengen und systematischen Aufbau der Theorie der reellen Funktionen kennen zu lernen. Dementsprechend sind alle Beweise bis in die Einzel heiten hinein ausgeführt, und in den ersten Paragraphen werden wich tige Beweismethoden eigens erläutert. Dabei nehmen wir jedoch den logischen und mengentheoretischen Gesetzen gegenüber einen "naiven", d. h. nicht-axiomatischen, Standpunkt ein. Das gilt besonders für das Prinzip der vollständigen Induktion und damit auch für den Begriff der natürlichen Zahl und der Folge. Wir geben eine Übersicht über den Inhalt des Buches. Grundlegend ist der Begriff der reellen Zahl. Im ersten Kapitel werden die Axiome des reellen Zahlkörpers mit ihren einfachsten Folge rungen ausführlich besprochen; die unendlich fernen Punkte + oo und - oo werden axiomatisch miteingeführt. Die nächsten beiden Kapitel sind dem Umgebungsbegriff und dem darauf fußenden Grenzwertbegriff für Folgen und Reihen gewidmet. Da wir für die Definition der Konvergenz die natürliche (uniforme) Topologie der Zahlengeraden zugrundelegen, bleibt die Konvergenz gegen ± oo ausgeschlossen. -Die Begriffe "Iimes superior" und "Iimes inferior" sind so gefaßt, daß sie mit der Definition der halbstetigen Funktionen harmonieren.
Aktualisiert: 2022-08-18
> findR *
MEHR ANZEIGEN
Bücher zum Thema reellen Zahl
Sie suchen ein Buch über reellen Zahl? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema reellen Zahl. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema reellen Zahl im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema reellen Zahl einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
reellen Zahl - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema reellen Zahl, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter reellen Zahl und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.