Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-07-02
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-29
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-27
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-27
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-27
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-26
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-26
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-26
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-24
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-24
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-23
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-23
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-23
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-23
> findR *
MEHR ANZEIGEN
Bücher von Blum, Lothar B.
Sie suchen ein Buch oder Publikation vonBlum, Lothar B. ? Bei Buch findr finden Sie alle Bücher Blum, Lothar B..
Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher
von Blum, Lothar B. im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die
Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus
unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und
populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich
bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch
von Blum, Lothar B. .
Blum, Lothar B. - Große Auswahl an Publikationen bei Buch findr
Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher
von Blum, Lothar B. die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten
vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher
verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:
Unser Repertoire umfasst Bücher von
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Neben Büchern von Blum, Lothar B. und Büchern aus verschiedenen Kategorien finden Sie schnell und
einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem
Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die
bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen,
Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen
das Team von Buchfindr.