Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg 0 t» (x). Der Nachweis der Kettenregel zweiter Ordnung erfolgt dann mittels der Ketten regel erster Ordnung, wobei man die Voraussetzungen so einrichtet, daß (Dt, Dg 0 t> in x und y in (Dt, Dg 0 t> (x) differenzierbar ist. Die Forderung, daß y differenzierbar ist, erweist sich als sehr einschränkend. Verlangt man, daß die Differenzierbarkeit die Stetigkeit nach sich zieht, so ist diese Forderung in Bezug auf Vektorraumtopologien von L(X, Y), L(Y, Z) und L(X, Z) im all gemeinen nicht erfüllt, zumindest nicht, wenn man noch annimmt, daß die Vektorraumtopologien so beschaffen sind, daß im Falle X = R oder C die natür lichen Zuordnungen zwischen Y und L(X, Y) und zwischen Z und L(X, Z) Iso morphien sind.
Aktualisiert: 2023-07-03
> findR *
Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg 0 t» (x). Der Nachweis der Kettenregel zweiter Ordnung erfolgt dann mittels der Ketten regel erster Ordnung, wobei man die Voraussetzungen so einrichtet, daß (Dt, Dg 0 t> in x und y in (Dt, Dg 0 t> (x) differenzierbar ist. Die Forderung, daß y differenzierbar ist, erweist sich als sehr einschränkend. Verlangt man, daß die Differenzierbarkeit die Stetigkeit nach sich zieht, so ist diese Forderung in Bezug auf Vektorraumtopologien von L(X, Y), L(Y, Z) und L(X, Z) im all gemeinen nicht erfüllt, zumindest nicht, wenn man noch annimmt, daß die Vektorraumtopologien so beschaffen sind, daß im Falle X = R oder C die natür lichen Zuordnungen zwischen Y und L(X, Y) und zwischen Z und L(X, Z) Iso morphien sind.
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
GÄHLER: GRUNDSTRUKTUREN DER ANALYSIS II MLM2 42 E-BOOK
Aktualisiert: 2023-05-29
> findR *
GÄHLER: GRUNDSTRUKTUREN DER ANALYSIS I. MLM2 BAND 41 E-BOOK
Aktualisiert: 2023-05-29
> findR *
GÄHLER: GRUNDSTRUKTUREN DER ANALYSIS I. MLM2 BAND 41 E-BOOK
Aktualisiert: 2023-03-27
> findR *
GÄHLER: GRUNDSTRUKTUREN DER ANALYSIS II MLM2 42 E-BOOK
Aktualisiert: 2023-03-27
> findR *
Aktualisiert: 2022-02-23
> findR *
Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg 0 t» (x). Der Nachweis der Kettenregel zweiter Ordnung erfolgt dann mittels der Ketten regel erster Ordnung, wobei man die Voraussetzungen so einrichtet, daß (Dt, Dg 0 t> in x und y in (Dt, Dg 0 t> (x) differenzierbar ist. Die Forderung, daß y differenzierbar ist, erweist sich als sehr einschränkend. Verlangt man, daß die Differenzierbarkeit die Stetigkeit nach sich zieht, so ist diese Forderung in Bezug auf Vektorraumtopologien von L(X, Y), L(Y, Z) und L(X, Z) im all gemeinen nicht erfüllt, zumindest nicht, wenn man noch annimmt, daß die Vektorraumtopologien so beschaffen sind, daß im Falle X = R oder C die natür lichen Zuordnungen zwischen Y und L(X, Y) und zwischen Z und L(X, Z) Iso morphien sind.
Aktualisiert: 2022-02-23
> findR *
Zum Aufbau einer geeigneten, umfassenden Differentialrechnung in allgemei neren als normierten Räumen benötigt man bekanntlich Konvergenzbegriffe, die nur in Spezialfällen Topologien definieren. Das zeigt sich insbesondere beim Nachweis der Kettenregel höherer Ordnung. Will man etwa die Kettenregel zweiter Ordnung für Abbildungen t: X 0--+ Y und g: Y 0--+ Z beweisen, so bringt man die in der Kettenregel erster Ordnung auftretende Beziehung D(g 0 f) (x) = = Dg(t(x)) 0 Dt(x) unter Benutzung der Kompositionsabbildung y von L(X, Y) X L(Y, Z) in L(X, Z) in die Form D(g 0 f) (x) = (y 0 (Dt, Dg 0 t» (x). Der Nachweis der Kettenregel zweiter Ordnung erfolgt dann mittels der Ketten regel erster Ordnung, wobei man die Voraussetzungen so einrichtet, daß (Dt, Dg 0 t> in x und y in (Dt, Dg 0 t> (x) differenzierbar ist. Die Forderung, daß y differenzierbar ist, erweist sich als sehr einschränkend. Verlangt man, daß die Differenzierbarkeit die Stetigkeit nach sich zieht, so ist diese Forderung in Bezug auf Vektorraumtopologien von L(X, Y), L(Y, Z) und L(X, Z) im all gemeinen nicht erfüllt, zumindest nicht, wenn man noch annimmt, daß die Vektorraumtopologien so beschaffen sind, daß im Falle X = R oder C die natür lichen Zuordnungen zwischen Y und L(X, Y) und zwischen Z und L(X, Z) Iso morphien sind.
Aktualisiert: 2023-04-04
> findR *
Aktualisiert: 2023-04-04
> findR *
MEHR ANZEIGEN
Bücher von Gähler, W.
Sie suchen ein Buch oder Publikation vonGähler, W. ? Bei Buch findr finden Sie alle Bücher Gähler, W..
Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher
von Gähler, W. im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die
Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus
unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und
populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich
bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch
von Gähler, W. .
Gähler, W. - Große Auswahl an Publikationen bei Buch findr
Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher
von Gähler, W. die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten
vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher
verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:
Unser Repertoire umfasst Bücher von
- Gahlinger, Chantal
- Gahlings, Ute
- Gahlings, Ute G
- Gahlings, Ute Gisela
- Gahlmann, Alfred J
- Gahm, Bernhard
- Gahm, Christian
- Gahm, Friederike
- Gahm, Hermann
- Gähme, Thomas
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Neben Büchern von Gähler, W. und Büchern aus verschiedenen Kategorien finden Sie schnell und
einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem
Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die
bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen,
Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen
das Team von Buchfindr.