Prägnantes Kennzeichen ist die anschauliche und leicht verständliche Darstellungsform des mathematischen Stoffes. Mit seiner unübertroffenen didaktischen Konzeption ermöglicht das Buch einen nahtlosen Übergang von der Schul- zur anwendungsorientierten Hochschulmathematik und hat auch diesen Band zum Standardwerk der Ingenieurmathematik werden lassen. In der aktuellen Auflage wurden zu ausgesuchten Aufgaben vollständige Lösungen aufgenommen, z. B. im Kapitel Differentialgleichungen.
Aktualisiert: 2023-07-02
> findR *
Prägnantes Kennzeichen ist die anschauliche und leicht verständliche Darstellungsform des mathematischen Stoffes. Mit seiner unübertroffenen didaktischen Konzeption ermöglicht das Buch einen nahtlosen Übergang von der Schul- zur anwendungsorientierten Hochschulmathematik und hat auch diesen Band zum Standardwerk der Ingenieurmathematik werden lassen. In der aktuellen Auflage wurden zu ausgesuchten Aufgaben vollständige Lösungen aufgenommen, z. B. im Kapitel Differentialgleichungen.
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
VI Eine Bitte des Autors Für Hinweise und Anregungen - insbesondere auch aus dem Kreis der Studenten - bin ich stets dankbar. Ein Wort des Dankes . . . an die Mitarbeiter des Vieweg-Verlages für die hervorragende Zusammenarbeit während der Entstehung und Drucklegung dieses Werkes, . . . an meine Rüsselsheimer Studenten (insbesondere aus dem Fachbereich Maschinenbau) für wertvolle Diskussionsbeiträge zur Gestaltung dieser Formelsammlung. Lothar Papula Wiesbaden, Juni 1986 VII Inhaltsverzeichnis I Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie . . . . . . . . 1 Grundlegende Begriffe über Mengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 1 Definition und Darstellung einer Menge . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Mengenoperationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 Spezielle Zahlenmengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Rechnen mit reellen Zahlen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1 Reelle Zahlen und ihre Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 1 Rationale, irrationale und reelle Zahlen . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 2 Rundungsregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 3 Darstellung der reellen Zahlen auf der Zahlengerade . . . . . . . . . . . 4 2. 1. 4 Grundrechenarten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. 2 Intervalle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 3 Bruchrechnung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 4 Potenzen und Wurzeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 5 Logarithmen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 6 Binomischer Lehrsatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Elementare (endliche) Reihen 11 3. 1 Definition einer Reihe 11 3. 2 Arithmetische Reihen 11 3. 3 Geometrische Reihen 11 12 3. 4 Spezielle Zahlenreihen 4 Gleichungen mit einer Unbekannten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1 Algebraische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1. 1 Allgemeine Vorbetrachtungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1. 2 Lineare Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 3 Quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 4 Kubische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 5 Bi-quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4. 2 Lösungshinweise flir nichtalgebraische Gleichungen . . . . . . . . . . . . . . . . . . 16 4. 3 Graphisches Lösungsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4. 4 Tangentenverfahren von Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aktualisiert: 2023-07-03
> findR *
VI Eine Bitte des Autors Für Hinweise und Anregungen - insbesondere auch aus dem Kreis der Studenten - bin ich stets dankbar. Ein Wort des Dankes . . . an die Mitarbeiter des Vieweg-Verlages für die hervorragende Zusammenarbeit während der Entstehung und Drucklegung dieses Werkes, . . . an meine Rüsselsheimer Studenten (insbesondere aus dem Fachbereich Maschinenbau) für wertvolle Diskussionsbeiträge zur Gestaltung dieser Formelsammlung. Lothar Papula Wiesbaden, Juni 1986 VII Inhaltsverzeichnis I Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie . . . . . . . . 1 Grundlegende Begriffe über Mengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 1 Definition und Darstellung einer Menge . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Mengenoperationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 Spezielle Zahlenmengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Rechnen mit reellen Zahlen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1 Reelle Zahlen und ihre Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 1 Rationale, irrationale und reelle Zahlen . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 2 Rundungsregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 3 Darstellung der reellen Zahlen auf der Zahlengerade . . . . . . . . . . . 4 2. 1. 4 Grundrechenarten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. 2 Intervalle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 3 Bruchrechnung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 4 Potenzen und Wurzeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 5 Logarithmen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 6 Binomischer Lehrsatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Elementare (endliche) Reihen 11 3. 1 Definition einer Reihe 11 3. 2 Arithmetische Reihen 11 3. 3 Geometrische Reihen 11 12 3. 4 Spezielle Zahlenreihen 4 Gleichungen mit einer Unbekannten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1 Algebraische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1. 1 Allgemeine Vorbetrachtungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1. 2 Lineare Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 3 Quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 4 Kubische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 5 Bi-quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4. 2 Lösungshinweise flir nichtalgebraische Gleichungen . . . . . . . . . . . . . . . . . . 16 4. 3 Graphisches Lösungsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4. 4 Tangentenverfahren von Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aktualisiert: 2023-07-03
> findR *
VI Eine Bitte des Autors Für Hinweise und Anregungen - insbesondere auch aus dem Kreis der Studenten - bin ich stets dankbar. Ein Wort des Dankes . . . an die Mitarbeiter des Vieweg-Verlages für die hervorragende Zusammenarbeit während der Entstehung und Drucklegung dieses Werkes, . . . an meine Rüsselsheimer Studenten (insbesondere aus dem Fachbereich Maschinenbau) für wertvolle Diskussionsbeiträge zur Gestaltung dieser Formelsammlung. Lothar Papula Wiesbaden, Juni 1986 VII Inhaltsverzeichnis I Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie . . . . . . . . 1 Grundlegende Begriffe über Mengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 1 Definition und Darstellung einer Menge . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Mengenoperationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 Spezielle Zahlenmengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Rechnen mit reellen Zahlen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1 Reelle Zahlen und ihre Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 1 Rationale, irrationale und reelle Zahlen . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 2 Rundungsregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 3 Darstellung der reellen Zahlen auf der Zahlengerade . . . . . . . . . . . 4 2. 1. 4 Grundrechenarten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. 2 Intervalle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 3 Bruchrechnung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 4 Potenzen und Wurzeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 5 Logarithmen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 6 Binomischer Lehrsatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Elementare (endliche) Reihen 11 3. 1 Definition einer Reihe 11 3. 2 Arithmetische Reihen 11 3. 3 Geometrische Reihen 11 12 3. 4 Spezielle Zahlenreihen 4 Gleichungen mit einer Unbekannten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1 Algebraische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1. 1 Allgemeine Vorbetrachtungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1. 2 Lineare Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 3 Quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 4 Kubische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 5 Bi-quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4. 2 Lösungshinweise flir nichtalgebraische Gleichungen . . . . . . . . . . . . . . . . . . 16 4. 3 Graphisches Lösungsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4. 4 Tangentenverfahren von Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aktualisiert: 2023-07-03
> findR *
VI Eine Bitte des Autors Für Hinweise und Anregungen - insbesondere auch aus dem Kreis der Studenten - bin ich stets dankbar. Ein Wort des Dankes . . . an die Mitarbeiter des Vieweg-Verlages für die hervorragende Zusammenarbeit während der Entstehung und Drucklegung dieses Werkes, . . . an meine Rüsselsheimer Studenten (insbesondere aus dem Fachbereich Maschinenbau) für wertvolle Diskussionsbeiträge zur Gestaltung dieser Formelsammlung. Lothar Papula Wiesbaden, Juni 1986 VII Inhaltsverzeichnis I Allgemeine Grundlagen aus Algebra, Arithmetik und Geometrie . . . . . . . . 1 Grundlegende Begriffe über Mengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. 1 Definition und Darstellung einer Menge . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 2 Mengenoperationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 3 Spezielle Zahlenmengen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Rechnen mit reellen Zahlen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1 Reelle Zahlen und ihre Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 1 Rationale, irrationale und reelle Zahlen . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 2 Rundungsregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 3 Darstellung der reellen Zahlen auf der Zahlengerade . . . . . . . . . . . 4 2. 1. 4 Grundrechenarten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. 2 Intervalle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 3 Bruchrechnung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. 4 Potenzen und Wurzeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2. 5 Logarithmen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 6 Binomischer Lehrsatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Elementare (endliche) Reihen 11 3. 1 Definition einer Reihe 11 3. 2 Arithmetische Reihen 11 3. 3 Geometrische Reihen 11 12 3. 4 Spezielle Zahlenreihen 4 Gleichungen mit einer Unbekannten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1 Algebraische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1. 1 Allgemeine Vorbetrachtungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4. 1. 2 Lineare Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 3 Quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 4 Kubische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4. 1. 5 Bi-quadratische Gleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4. 2 Lösungshinweise flir nichtalgebraische Gleichungen . . . . . . . . . . . . . . . . . . 16 4. 3 Graphisches Lösungsverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4. 4 Tangentenverfahren von Newton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aktualisiert: 2023-07-03
> findR *
Diese Formelsammlung ist an das dreibändige Lehrbuchsystem angepasst und ermöglicht einen raschen Zugriff zur gewünschten Information durch ein sehr ausführliches Inhalts- und Sachwortverzeichnis. Alle wichtigen Daten werden durch Formeln verdeutlicht. Rechenbeispiele zeigen, wie man die Formeln treffsicher auf eigene Fragestellungen anwendet. Viele Tabellen zu Laplace-Transformationen, zur Wahrscheinlichkeitsrechnung/Statistik sowie eine ausführliche Integraltafel helfen zuverlässig. In der aktuellen Auflage wurden Beispiele (Kurvendiskussion) ergänzt und der Lehrtext durch Texteinschübe verständlicher gestaltet.
Aktualisiert: 2023-07-03
> findR *
Diese Formelsammlung ist an das dreibändige Lehrbuchsystem angepasst und ermöglicht einen raschen Zugriff zur gewünschten Information durch ein sehr ausführliches Inhalts- und Sachwortverzeichnis. Alle wichtigen Daten werden durch Formeln verdeutlicht. Rechenbeispiele zeigen, wie man die Formeln treffsicher auf eigene Fragestellungen anwendet. Viele Tabellen zu Laplace-Transformationen, zur Wahrscheinlichkeitsrechnung/Statistik sowie eine ausführliche Integraltafel helfen zuverlässig. In der aktuellen Auflage wurden Beispiele (Kurvendiskussion) ergänzt und der Lehrtext durch Texteinschübe verständlicher gestaltet.
Aktualisiert: 2023-07-03
> findR *
Diese Formelsammlung ist an das dreibändige Lehrbuchsystem angepasst und ermöglicht einen raschen Zugriff zur gewünschten Information durch ein sehr ausführliches Inhalts- und Sachwortverzeichnis. Alle wichtigen Daten werden durch Formeln verdeutlicht. Rechenbeispiele zeigen, wie man die Formeln treffsicher auf eigene Fragestellungen anwendet. Viele Tabellen zu Laplace-Transformationen, zur Wahrscheinlichkeitsrechnung/Statistik sowie eine ausführliche Integraltafel helfen zuverlässig. In der aktuellen Auflage wurden Beispiele (Kurvendiskussion) ergänzt und der Lehrtext durch Texteinschübe verständlicher gestaltet.
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
MEHR ANZEIGEN
Bücher von Papula, Lothar
Sie suchen ein Buch oder Publikation vonPapula, Lothar ? Bei Buch findr finden Sie alle Bücher Papula, Lothar.
Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher
von Papula, Lothar im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die
Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus
unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und
populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich
bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch
von Papula, Lothar .
Papula, Lothar - Große Auswahl an Publikationen bei Buch findr
Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher
von Papula, Lothar die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten
vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher
verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:
Unser Repertoire umfasst Bücher von
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Neben Büchern von Papula, Lothar und Büchern aus verschiedenen Kategorien finden Sie schnell und
einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem
Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die
bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen,
Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen
das Team von Buchfindr.