Praktische Mathematik

Praktische Mathematik von Hainer,  Karl, Stummel,  Friedrich
Die praktische Mathematik beschäftigt sich mit Verfahren zur Lösung typischer mathematischer Grundaufgaben, die in Anwendungsgebieten der Mathematik und in der Praxis auftreten, sowie mit der mathematischen Analyse und Behandlung dieser Verfahren. In naturwissenschaftlichen und technischen Anwendungsgebieten handelt es sich bei diesen Aufgaben zum Beispiel um die Berechnung spezieller Funktionen, die näherungsweise Berechnung von Differentialquotienten und von Integralen dieser Funktionen, um die Lösung algebraischer Gleichungen, von linearen und nichtline aren algebraischen Gleichungssystemen, um die näherungsweise Lösung von Differential-und Integralgleichungen und so weiter. Für die Praxis ist man dabei vorwiegend an Methoden interessiert, die die näherungsweise, numerische Lösung der Aufgaben gestatten. In diesem Buch werden die üblichen Vorkenntnisse der Differential- und Integralrechnung sowie der linearen Algebra aus dem ersten Jahr des Mathematikstu diums vorausgesetzt. Die numerischen Übungsaufgaben sind so gestellt, daß sie im Rahmen eines Mathematischen Praktikums auf programmierbaren digitalen Rechen maschinen gelöst werden können. Ein Teil der Aufgaben läßt sich bereits auf programmierbaren Taschenrechnern bearbeiten. Zahlreiche Taschenrechnerpro gramme mit detaillierten Beschreibungen der numerischen Algorithmen sind in einem Buch des zweiten Autors zu finden. Die problemorientierten Programmierungsspra chen moderner Großrechenanlagen gestatten ohne weiteres das Rechnen im Bereich der komplexen Zahlen. Eine Reihe von Aufgabenstellungen wie zum Beispiel die Bestimmung von Nullstellen bei Polynomen oder von Eigenwerten bei Matrizen ist im allgemeinen Fall nur im Körper der komplexen Zahlen vollständig lösbar.
Aktualisiert: 2023-07-02
> findR *

Praktische Mathematik

Praktische Mathematik von Hainer,  Karl, Stummel,  Friedrich
Die praktische Mathematik beschäftigt sich mit Verfahren zur Lösung typischer mathematischer Grundaufgaben, die in Anwendungsgebieten der Mathematik und in der Praxis auftreten, sowie mit der mathematischen Analyse und Behandlung dieser Verfahren. In naturwissenschaftlichen und technischen Anwendungsgebieten handelt es sich bei diesen Aufgaben zum Beispiel um die Berechnung spezieller Funktionen, die näherungsweise Berechnung von Differentialquotienten und von Integralen dieser Funktionen, um die Lösung algebraischer Gleichungen, von linearen und nichtline aren algebraischen Gleichungssystemen, um die näherungsweise Lösung von Differential-und Integralgleichungen und so weiter. Für die Praxis ist man dabei vorwiegend an Methoden interessiert, die die näherungsweise, numerische Lösung der Aufgaben gestatten. In diesem Buch werden die üblichen Vorkenntnisse der Differential- und Integralrechnung sowie der linearen Algebra aus dem ersten Jahr des Mathematikstu diums vorausgesetzt. Die numerischen Übungsaufgaben sind so gestellt, daß sie im Rahmen eines Mathematischen Praktikums auf programmierbaren digitalen Rechen maschinen gelöst werden können. Ein Teil der Aufgaben läßt sich bereits auf programmierbaren Taschenrechnern bearbeiten. Zahlreiche Taschenrechnerpro gramme mit detaillierten Beschreibungen der numerischen Algorithmen sind in einem Buch des zweiten Autors zu finden. Die problemorientierten Programmierungsspra chen moderner Großrechenanlagen gestatten ohne weiteres das Rechnen im Bereich der komplexen Zahlen. Eine Reihe von Aufgabenstellungen wie zum Beispiel die Bestimmung von Nullstellen bei Polynomen oder von Eigenwerten bei Matrizen ist im allgemeinen Fall nur im Körper der komplexen Zahlen vollständig lösbar.
Aktualisiert: 2023-07-02
> findR *

Praktische Mathematik

Praktische Mathematik von Hainer,  Karl, Stummel,  Friedrich
Die praktische Mathematik beschäftigt sich mit Verfahren zur Lösung typischer mathematischer Grundaufgaben, die in Anwendungsgebieten der Mathematik und in der Praxis auftreten, sowie mit der mathematischen Analyse und Behandlung dieser Verfahren. In naturwissenschaftlichen und technischen Anwendungsgebieten handelt es sich bei diesen Aufgaben zum Beispiel um die Berechnung spezieller Funktionen, die näherungsweise Berechnung von Differentialquotienten und von Integralen dieser Funktionen, um die Lösung algebraischer Gleichungen, von linearen und nichtline aren algebraischen Gleichungssystemen, um die näherungsweise Lösung von Differential-und Integralgleichungen und so weiter. Für die Praxis ist man dabei vorwiegend an Methoden interessiert, die die näherungsweise, numerische Lösung der Aufgaben gestatten. In diesem Buch werden die üblichen Vorkenntnisse der Differential- und Integralrechnung sowie der linearen Algebra aus dem ersten Jahr des Mathematikstu diums vorausgesetzt. Die numerischen Übungsaufgaben sind so gestellt, daß sie im Rahmen eines Mathematischen Praktikums auf programmierbaren digitalen Rechen maschinen gelöst werden können. Ein Teil der Aufgaben läßt sich bereits auf programmierbaren Taschenrechnern bearbeiten. Zahlreiche Taschenrechnerpro gramme mit detaillierten Beschreibungen der numerischen Algorithmen sind in einem Buch des zweiten Autors zu finden. Die problemorientierten Programmierungsspra chen moderner Großrechenanlagen gestatten ohne weiteres das Rechnen im Bereich der komplexen Zahlen. Eine Reihe von Aufgabenstellungen wie zum Beispiel die Bestimmung von Nullstellen bei Polynomen oder von Eigenwerten bei Matrizen ist im allgemeinen Fall nur im Körper der komplexen Zahlen vollständig lösbar.
Aktualisiert: 2023-07-02
> findR *

Eigenwertaufgaben in Hilbertschen Räumen

Eigenwertaufgaben in Hilbertschen Räumen von Kohaupt,  Ludwig, Stummel,  Friedrich
Dieses Buch vereint ein Vorlesungsskript über die Behandlung von Eigenwertaufgaben in Hilbertschen Räumen von Friedrich Stummel und Übungsaufgaben zu den Eigenwertaufgaben sowie zugehörigen Lösungen von Ludwig Kohaupt. Neben Standardmethoden werden aus der Funktionentheorie stammende Methoden verwandt sowie Themen behandelt, die bisher noch keinen Eingang in Lehrbücher gefunden haben. Die hergeleiteten allgemeinen Ergebnisse sind auf Integralgleichungen, Rand- und Eigenwertaufgaben gewöhnlicher und partieller Differentialgleichungen sowie auf Matrixgleichungen anwendbar und werden am regulären Sturm-Liouville-Problem sowie weiteren Beispielen erläutert. Die hier vorliegende funktionalanalysis-orientierte Darstellung erlaubt es, viele Methoden unter einheitlichen Gesichtspunkten zu betrachten, was auch zu einem besseren Überblick über die verschiedenen Anwendungsgebiete führt. Dank der vielen gelösten Übungsaufgaben ist das vorliegende Skript nicht nur als Vorlage für eine Vorlesung geeignet, sondern auch zum Selbststudium, insbesondere für Studierende der Mathematik, aber wegen des engen Zusammenhangs zwischen Eigenvektoren und Eigenformen bei Anwendungsaufgaben auch für Studierende der Physik und Ingenieurwissenschaften.
Aktualisiert: 2023-05-15
> findR *

Eigenwertaufgaben in Hilbertschen Räumen

Eigenwertaufgaben in Hilbertschen Räumen von Kohaupt,  Ludwig, Stummel,  Friedrich
Dieses Buch vereint ein Vorlesungsskript über die Behandlung von Eigenwertaufgaben in Hilbertschen Räumen von Friedrich Stummel und Übungsaufgaben zu den Eigenwertaufgaben sowie zugehörigen Lösungen von Ludwig Kohaupt. Neben Standardmethoden werden aus der Funktionentheorie stammende Methoden verwandt sowie Themen behandelt, die bisher noch keinen Eingang in Lehrbücher gefunden haben. Die hergeleiteten allgemeinen Ergebnisse sind auf Integralgleichungen, Rand- und Eigenwertaufgaben gewöhnlicher und partieller Differentialgleichungen sowie auf Matrixgleichungen anwendbar und werden am regulären Sturm-Liouville-Problem sowie weiteren Beispielen erläutert. Die hier vorliegende funktionalanalysis-orientierte Darstellung erlaubt es, viele Methoden unter einheitlichen Gesichtspunkten zu betrachten, was auch zu einem besseren Überblick über die verschiedenen Anwendungsgebiete führt. Dank der vielen gelösten Übungsaufgaben ist das vorliegende Skript nicht nur als Vorlage für eine Vorlesung geeignet, sondern auch zum Selbststudium, insbesondere für Studierende der Mathematik, aber wegen des engen Zusammenhangs zwischen Eigenvektoren und Eigenformen bei Anwendungsaufgaben auch für Studierende der Physik und Ingenieurwissenschaften.
Aktualisiert: 2023-04-17
> findR *

Praktische Mathematik

Praktische Mathematik von Hainer,  Karl, Stummel,  Friedrich
Die praktische Mathematik beschäftigt sich mit Verfahren zur Lösung typischer mathematischer Grundaufgaben, die in Anwendungsgebieten der Mathematik und in der Praxis auftreten, sowie mit der mathematischen Analyse und Behandlung dieser Verfahren. In naturwissenschaftlichen und technischen Anwendungsgebieten handelt es sich bei diesen Aufgaben zum Beispiel um die Berechnung spezieller Funktionen, die näherungsweise Berechnung von Differentialquotienten und von Integralen dieser Funktionen, um die Lösung algebraischer Gleichungen, von linearen und nichtline aren algebraischen Gleichungssystemen, um die näherungsweise Lösung von Differential-und Integralgleichungen und so weiter. Für die Praxis ist man dabei vorwiegend an Methoden interessiert, die die näherungsweise, numerische Lösung der Aufgaben gestatten. In diesem Buch werden die üblichen Vorkenntnisse der Differential- und Integralrechnung sowie der linearen Algebra aus dem ersten Jahr des Mathematikstu diums vorausgesetzt. Die numerischen Übungsaufgaben sind so gestellt, daß sie im Rahmen eines Mathematischen Praktikums auf programmierbaren digitalen Rechen maschinen gelöst werden können. Ein Teil der Aufgaben läßt sich bereits auf programmierbaren Taschenrechnern bearbeiten. Zahlreiche Taschenrechnerpro gramme mit detaillierten Beschreibungen der numerischen Algorithmen sind in einem Buch des zweiten Autors zu finden. Die problemorientierten Programmierungsspra chen moderner Großrechenanlagen gestatten ohne weiteres das Rechnen im Bereich der komplexen Zahlen. Eine Reihe von Aufgabenstellungen wie zum Beispiel die Bestimmung von Nullstellen bei Polynomen oder von Eigenwerten bei Matrizen ist im allgemeinen Fall nur im Körper der komplexen Zahlen vollständig lösbar.
Aktualisiert: 2023-02-01
> findR *

Praktische Mathematik

Praktische Mathematik von Hainer,  Karl, Stummel,  Friedrich
Die praktische Mathematik beschäftigt sich mit Verfahren zur Lösung typischer mathematischer Grundaufgaben, die in Anwendungsgebieten der Mathematik und in der Praxis auftreten, sowie mit der mathematischen Analyse und Behandlung dieser Verfahren. In naturwissenschaftlichen und technischen Anwendungsgebieten handelt es sich bei diesen Aufgaben zum Beispiel um die Berechnung spezieller Funktionen, die näherungsweise Berechnung von Differentialquotienten und von Integralen dieser Funktionen, um die Lösung algebraischer Gleichungen, von linearen und nichtline aren algebraischen Gleichungssystemen, um die näherungsweise Lösung von Differential-und Integralgleichungen und so weiter. Für die Praxis ist man dabei vorwiegend an Methoden interessiert, die die näherungsweise, numerische Lösung der Aufgaben gestatten. In diesem Buch werden die üblichen Vorkenntnisse der Differential- und Integralrechnung sowie der linearen Algebra aus dem ersten Jahr des Mathematikstu diums vorausgesetzt. Die numerischen Übungsaufgaben sind so gestellt, daß sie im Rahmen eines Mathematischen Praktikums auf programmierbaren digitalen Rechen maschinen gelöst werden können. Ein Teil der Aufgaben läßt sich bereits auf programmierbaren Taschenrechnern bearbeiten. Zahlreiche Taschenrechnerpro gramme mit detaillierten Beschreibungen der numerischen Algorithmen sind in einem Buch des zweiten Autors zu finden. Die problemorientierten Programmierungsspra chen moderner Großrechenanlagen gestatten ohne weiteres das Rechnen im Bereich der komplexen Zahlen. Eine Reihe von Aufgabenstellungen wie zum Beispiel die Bestimmung von Nullstellen bei Polynomen oder von Eigenwerten bei Matrizen ist im allgemeinen Fall nur im Körper der komplexen Zahlen vollständig lösbar.
Aktualisiert: 2023-04-04
> findR *
MEHR ANZEIGEN

Bücher von Stummel, Friedrich

Sie suchen ein Buch oder Publikation vonStummel, Friedrich ? Bei Buch findr finden Sie alle Bücher Stummel, Friedrich. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher von Stummel, Friedrich im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch oder die Publiketion für Ihr Lesevergnügen oder Ihr Interessensgebiet. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zu Ihrem Thema einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch von Stummel, Friedrich .

Stummel, Friedrich - Große Auswahl an Publikationen bei Buch findr

Bei uns finden Sie Bücher aller beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher von Stummel, Friedrich die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Schlagworte Genre bei Buchfindr:

Unser Repertoire umfasst Bücher von

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Neben Büchern von Stummel, Friedrich und Büchern aus verschiedenen Kategorien finden Sie schnell und einfach auch eine Auflistung thematisch passender Publikationen. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.