Analytische Geometrie spezieller Flächen und Raumkurven
Kuno Fladt
Die Freude an der Gestalt ist es, welche den Geometer macht. Alfred Clebsch in „Zum Gedächtnis an Julius Plücker“. Dieses Buch ist in jeder Beziehung ein Wagnis, aus drei Hauptgründen: 1. wächst beim Übergang von zwei zu drei Dimensionen, von den ebenen Kurven zu den Flächen und zu den Raumkurven, die Zahl der zu behandelnden Gebilde sofort ins Uferlose; 2. übersteigen die mathematischen Mittel der Stoffbehandlung viel früher und in viel größerem Umfange den elementaren mathematischen Ausbildungsgrad 1): 3. setzt der zu behandelnde Stoff, auch wenn er „elementar“ ist, doch sehr viel an „allge meinen“ geometrischen Kenntnissen voraus, die (im Gegensatz zum Kurvenbuch 2)) dem Leser nicht gegenwärtig sind und auch gar nicht gegenwärtig sein können. Der Schwierigkeiten 2. und 3. suchten wir auf folgende Weise wenigstens einigermaßen Herr zu werden: Mit der letzten, 3., so, daß wir drei Kapitel „Aus der Koordinaten-, der alge braischen und der Differentialgeometrie“ vorausschickten, in denen wir auf möglichst elementare Weise den Stoff darzulegen versuchten, der die mathematischen Kenntnisse des Gymnasiums überschreitet bzw. der in den Anfangervorlesungen zwar behandelt wird, dort aber nicht zusammenhängend, wie es fur uns wichtig ist, sondern an vielen Stellen zerstreut, weil mit vielem anderen Stoff vermengt.