Autonome Entscheidungsfindung in der Produktionssteuerung komplexer Werkstattfertigungen.
Bernd Waschneck
Die Variabilität in der kundenindividuellen Massenproduktion stellt eine enorme Herausforderung für die industrielle Fertigung dar. Die komplexe Werkstattfertigung als Produktionsprinzip eignet sich aufgrund der inhärenten Flexibilität besonders für die kundenindividuelle Massenproduktion. Allerdings sind die bestehenden Methodiken für die Produktionssteuerung einer Werkstattfertigung für die Einmal- oder Wiederholproduktion ausgelegt. In der vorliegenden Arbeit wird eine Methodik für eine dezentrale, selbstorganisierte und autonome Produktionssteuerung für eine Werkstattfertigung entwickelt, die dazu beiträgt, mit der zunehmenden Komplexität und dem gesteigerten Produktionsvolumen umzugehen. Dabei wird die Produktion als Reinforcement-Learning-Modell formalisiert, in dem mehrere kooperative Deep-Q-Network-Agenten lernen, die Abarbeitungsreihenfolge zu optimieren. Die Erprobung der Methodik in zwei praxisnahen Fallbeispielen aus der Halbleiterindustrie zeigt ihre Leistungsfähigkeit. In beiden Fallbeispielen konnten Strategien zur Optimierung der Abarbeitungsreihenfolge auf oder über Expertenniveau autonom erlernt werden.