Differentialgleichungen
Eine Einführung unter besonderer Berücksichtigung der Anwendungen
Lothar Collatz
gestellte Aufgaben, Methode der finiten Elemente, Verzweigungsprobleme und anderes. Bei dem Problem der Modernisierung der Darstellung glaubte ich, behutsam vorge hen zu müssen. Es gibt genügend viele sehr abstrakte, oft auf der Funktionalanalysis basierende Lehrbücher über Differentialgleichungen, bei denen aber gewöhnlich die Anwendungen und die konkrete Seite zu kurz kommen. Es lag mir aber sehr daran, daß Ingenieure und Naturwissenschaftler die Darstellung verstehen können. Damit aber den Anwendern der Zugang zu moderner mathematischer Literatur nicht ver baut wird, habe ich mich entschlossen, den grundlegenden allgemeinen Existenz-und Eindeutigkeitssatz zweimal zu bringen, einmal in der klassischen Weise und ein zweites Mal in funktionalanalytischer Sprechweise; der Leser wird bemerken, daß die bei den Beweise in gleicher Weise vorgehen. An dieser Stelle sei mir ein Wort zur allgemeinen Situation der Mathematik gestat tet: Bei der Mathematik, die doch von ihrer Anwendbarkeit lebt, besteht vielfach immer noch die Gefahr, die Abstraktionen über zu bewerten und die Konkretisierun gen zu vernachlässigen. Häufig wird ein guter Ingenieur mit einer konkreten Diffe rentialgleichung besser fertig als ein Mathematiker, und die Mathematik verliert an Boden. Das bedeutet immer noch eine ernst zu nehmende Gefahr für die Mathematik. Bei der zweiten Auflage haben mir die Herren Prof. Dr. Günter Meinardus, Dr. Alfred Meyer und Dr. Rüdiger Nicolovius sehr geholfen. Sie haben nicht nur die mühevolle Überprüfung bis in alle Einzelheiten des Zahlenmaterials vorgenommen, sondern mir auch zahlreiche wertvolle Ergänzungs- und Verbesserungsvorschläge gemacht, z. B. verdankt ihnen die Zusammenstellung in Kapitel III Nr. 20 die Über sichtlichkeit und Vollständigkeit.