Lineare Algebra
H.J. Kowalsky, Gerhard Michler
Die Neuauflage dieses Standardlehrbuchs, das nun vor 40 Jahren erstmals erschien, behandelt den Stoff einer zweisemestrigen Lehrveranstaltung „Lineare Algebra“ vorrangig vom algorithmischen Standpunkt aus. Damit wird das Konzept der 11. Auflage beibehalten, in der die Autoren den modernen Entwicklungen in Forschung und Lehre sowie dem weit verbreiteten Einsatz von Computeralgebrasystemen Rechnung getragen haben. Darüber hinaus werden die Anwendungen der Linearen Algebra in der affinen und projektiven Geometrie behandelt und die algebraischen Grundlagen für die Numerik bereitgestellt. Das Buch wendet sich vorwiegend an Studenten der Mathematik, Physik und Elektrotechnik. Behandelt wird folgender Stoff: Grundbegriffe · Struktur der Vektorräume · Lineare Abbildungen und Matrizen · Gauß-Algorithmus und Gleichungssysteme · Determinanten · Eigenwerte, Eigenvektoren und Jordan-Form · Euklidische und unitäre Vektorräume · Anwendungen in der Geometrie · Ringe und Moduln · Multilineare Algebra · Moduln über Hauptidealringen · Rationale kanonische Normalform einer Matrix · Computeralgebrasysteme · Lösungen der etwa 150 Aufgaben