Parametrisierte uniforme Berechnungskomplexität in Geometrie und Numerik
Carsten Rösnick
Carsten Rösnick legt seiner Arbeit die Frage nach der algorithmischen Komplexität der approximativen Berechnung von Operatoren aus Geometrie, Topologie und Analysis zugrunde. Er betrachtet Operatoren wie Mengendurchschnitt, Projektion, Maximierung, Integration und Funktionsinversion. Der Begriff der Komplexität ist hierbei im rigorosen Sinne von garantierten Laufzeitschranken und asymptotischen Optimalitätsbeweisen zu verstehen. Dazu führt der Autor Kodierungen für Mengen und Funktionen ein und untersucht sie hinsichtlich ihrer (Polynomialzeit-)Äquivalenz, um schließlich in der Bestimmung parametrisierter Komplexitätsschranken für obige Operatoren Verwendung zu finden.