Stochastische Schadenreservierung unter Verwendung von Zustandsraummodellen und des Kalman-Filters
Arne Johannssen
Eine Nicht-Lebens-Versicherung steht zum Ende jedes Geschäftsjahres vor der Situation, dass die eingenommenen Prämien zwar bekannt sind, die zu zahlende Summe an Schadenzahlungen jedoch unbekannt ist. Für diese ausstehenden Schadenverpflichtungen sind angemessene Rückstellungen/Reserven zu bilden, die oftmals den größten versicherungstechnischen Passivposten in der Bilanz bilden. Aus diesem Grund stellt eine adäquate Schadenreservierung, d.h. eine Prognose dieser Verbindlichkeiten samt einer Quantifizierung ihrer Unsicherheit, ein zentrales und hochaktuelles versicherungsmathematisches Thema dar. Das Ziel dieser Studie besteht darin, Schadenreservierungsverfahren vorzustellen, denen eine Zustandsraummodellierung im Zusammenhang mit der Anwendung der Kalman-Filter-Algorithmen zugrunde liegt. Hierzu werden in diesem Kontext verfasste Arbeiten zusammengetragen, kategorisiert, detailliert erläutert und etwaige Ungereimtheiten in ihnen behoben. Zudem wird mit dem Modell von Johannssen (2014) ein neues Zustandsraummodell für Schadenstände entwickelt, das in seiner Konzeption losgelöst von den bestehenden Modellen ist. Überdies werden die dargestellten Verfahren einem umfangreichen konzeptionellen und empirischen Vergleich unterzogen, in dessen Rahmen auch einige der populärsten Schadenreservierungsverfahren einbezogen werden. Die vorliegende Arbeit stellt damit die erste Abhandlung dar, die einen eingehenden Überblick über den aktuellen Forschungsstand in Bezug auf den Einsatz von Zustandsraummodellen und des Kalman-Filters in der stochastischen Schadenreservierung liefert.