Tendenzen und Herausforderungen in der geometrischen Produktspezifikation am Beispiel der Rauheitsmesstechnik
Matthias Eifler
Die geometrische Produktspezifikation steht – wie viele andere Industriezweige – vor einschneidenden Veränderungen. Durch Digitalisierung und Automatisierung ändern sich viele industrielle Rahmenbedingungen. Ziel dieser Arbeit ist es, die derzeitigen Trends für die industrielle Rauheitsmesstechnik systematisch zusammenzutragen. Basierend auf diesen Veränderungen werden korrespondierende eigene Forschungsarbeiten vorgestellt, welche an die gezogenen Schlussfolgerungen anknüpfen1. Dabei wird ein ganzheitlicher Ansatz zur Betrachtung technischer Oberflächen gewählt, welcher ausgehend von der fertigungstechnischen Erzeugung deterministischer Rauheitsstrukturen deren Beschreibung mittels mathematischer Modelle, deren messtechnische Erfassung durch typische Topographie-Messgeräte sowie die anschließende Charakterisierung durch Anwendung von Interpolation, Filterung sowie der Berechnung von Rauheitskenngrößen einschließt.
Im Rahmen fertigungstechnischer Betrachtungen werden dabei neue Technologien für die Herstellung flächenhafter Kalibriernormale untersucht, welche stellvertretend für deterministische Rauheitsstrukturen dienen, die immer weitere industrielle Verbreitung finden, um funktionelle Bauteileigenschaften mithilfe der Oberflächenbeschaffenheit abzubilden. Als Fertigungsverfahren werden dabei das direkte Laserschreiben sowie das Mikrofräsen betrachtet.
Für die eigentliche Betrachtung dieser Oberflächen werden dabei Ansätze zur Modellierung von Rauheitseigenschaften untersucht, welche auf Methoden aus der Zeitreihenmodellierung basieren.
Die messtechnische Erfassung von Rauheitsstrukturen ist anschließend Gegenstand der Analyse des Übertragungsverhaltens. Dabei werden hier ebenfalls Modelle genutzt, um die Übertragung von Oberflächeneigenschaften durch technische Rauheitsmessgeräte zu modellieren.
Letzte Betrachtungen werden zur Auswertung von Rauheitskenngrößen angestellt. Dabei werden insbesondere die funktionsorientierten Rauheitskenngrößen untersucht, welche aufgrund der zunehmenden Komplexität technischer rauer Oberflächen verstärkt an Bedeutung gewinnen.