Numerisches Python
• Grundlagen der Lösung numerischer Probleme mit Python
• Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
• Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
• Datenvisualisierung mit Matplotlib
• Ideal zum Umstieg von Matlab auf Python
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
AUS DEM INHALT //
NumPy:
Numerische Operationen auf mehrdimensionalen Arrays/Broadcasting/Ufuncs
Matplotlib:
Diskrete und kontinuierliche Graphen/Balken- und Säulendiagramme/Histogramme/Konturplots
Pandas:
Series/DataFrames/Lesen, Schreiben und Bearbeiten von Excel- und csv-Dateien/Umgang mit unvollständigen Daten/Datenvisualisierung/Zeitserien
EXTRA: E-Book inside. Systemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions.
Aktualisiert: 2023-06-27
> findR *
Numerisches Python
• Grundlagen der Lösung numerischer Probleme mit Python
• Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
• Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
• Datenvisualisierung mit Matplotlib
• Ideal zum Umstieg von Matlab auf Python
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
AUS DEM INHALT //
NumPy:
Numerische Operationen auf mehrdimensionalen Arrays/Broadcasting/Ufuncs
Matplotlib:
Diskrete und kontinuierliche Graphen/Balken- und Säulendiagramme/Histogramme/Konturplots
Pandas:
Series/DataFrames/Lesen, Schreiben und Bearbeiten von Excel- und csv-Dateien/Umgang mit unvollständigen Daten/Datenvisualisierung/Zeitserien
EXTRA: E-Book inside. Systemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions.
Aktualisiert: 2023-06-27
> findR *
- Grundlagen zur Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen mit NumPy, z. B. im maschinellen Lernen
- Datenvisualisierung mit Matplotlib
- Ideal für Personen aus Wissenschaft, Ingenieurwesen und Datenanalyse
- Ideal zum Umstieg von Matlab auf Python
- Einführung anhand vieler Beispiele und Praxisfälle sowie Musterlösungen
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Dieses Buch vermittelt die Python-Grundlagen zur Lösung numerischer Probleme aus den Gebieten »Data Science« und »Maschinelles Lernen«.
Im ersten Teil geht es um NumPy als Basis der numerischen Programmierung mit Python. Eingehend behandelt werden Arrays als zentraler Datentyp für alles, Numerische Operationen, Broadcasting und Ufuncs. Statistik und Wahrscheinlichkeitsrechnung ist ein eigenes Kapitel gewidmet, ebenso wie Boolscher Maskierung und File-Handling.
Die Datenvisualisierung mit Matplotlib bildet den Schwerpunkt des zweiten Teils. Zunächst geht es um die Begrif ichkeit von Matplotlib. Behandelt werden Linien-, Balkendiagramme, Histogramme und Konturplots.
Der dritte Teil dreht sich um Pandas mit seinen Series und DataFrames. Behandelt wird auch der Umgang mit verschiedensten Dateiformaten wie Excel, CSV und JSON sowie mit unvollständigen Daten und NaN. Aufgezeigt werden die Möglichkeiten der Datenvisualisierung direkt mit Pandas.
Der vierte Teil bietet Beispielanwendungen des erlernten Stoffes, wie z.B. ein Haushaltsbuch und eine praxistaugliche Einnahmeüberschussrechnung. Auch findet sich hier eine Einführung in Bildverarbeitungstechniken.
Fast jedes der 32 Kapitel enthält zusätzliche Übungen zum Erproben und Vertiefen des Erlernten, die zugehörigen Lösungen sind im fünften Teil zusammengefasst.
AUS DEM INHALT //
NumPy
• Numerische Operationen auf mehrdimensionalen Arrays
• Broadcasting und Ufuncs
Matplotlib:
• Diskrete und kontinuierliche Graphen
• Balken- und Säulendiagramme, Histogramme, Konturplots
Pandas:
• Series und DataFrames
• Arbeiten mit Excel-, csv- und JSON-Dateien
• Unvollständige Daten (NaN)
• Datenvisualisierung
Praxisbeispiele:
• Bildverarbeitung
• Haushaltsbuch und Einnahmeüberschussrechnung
Aktualisiert: 2023-06-27
> findR *
- Grundlagen zur Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen mit NumPy, z. B. im maschinellen Lernen
- Datenvisualisierung mit Matplotlib
- Ideal für Personen aus Wissenschaft, Ingenieurwesen und Datenanalyse
- Ideal zum Umstieg von Matlab auf Python
- Einführung anhand vieler Beispiele und Praxisfälle sowie Musterlösungen
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Dieses Buch vermittelt die Python-Grundlagen zur Lösung numerischer Probleme aus den Gebieten »Data Science« und »Maschinelles Lernen«.
Im ersten Teil geht es um NumPy als Basis der numerischen Programmierung mit Python. Eingehend behandelt werden Arrays als zentraler Datentyp für alles, Numerische Operationen, Broadcasting und Ufuncs. Statistik und Wahrscheinlichkeitsrechnung ist ein eigenes Kapitel gewidmet, ebenso wie Boolscher Maskierung und File-Handling.
Die Datenvisualisierung mit Matplotlib bildet den Schwerpunkt des zweiten Teils. Zunächst geht es um die Begrif ichkeit von Matplotlib. Behandelt werden Linien-, Balkendiagramme, Histogramme und Konturplots.
Der dritte Teil dreht sich um Pandas mit seinen Series und DataFrames. Behandelt wird auch der Umgang mit verschiedensten Dateiformaten wie Excel, CSV und JSON sowie mit unvollständigen Daten und NaN. Aufgezeigt werden die Möglichkeiten der Datenvisualisierung direkt mit Pandas.
Der vierte Teil bietet Beispielanwendungen des erlernten Stoffes, wie z.B. ein Haushaltsbuch und eine praxistaugliche Einnahmeüberschussrechnung. Auch findet sich hier eine Einführung in Bildverarbeitungstechniken.
Fast jedes der 32 Kapitel enthält zusätzliche Übungen zum Erproben und Vertiefen des Erlernten, die zugehörigen Lösungen sind im fünften Teil zusammengefasst.
AUS DEM INHALT //
NumPy
• Numerische Operationen auf mehrdimensionalen Arrays
• Broadcasting und Ufuncs
Matplotlib:
• Diskrete und kontinuierliche Graphen
• Balken- und Säulendiagramme, Histogramme, Konturplots
Pandas:
• Series und DataFrames
• Arbeiten mit Excel-, csv- und JSON-Dateien
• Unvollständige Daten (NaN)
• Datenvisualisierung
Praxisbeispiele:
• Bildverarbeitung
• Haushaltsbuch und Einnahmeüberschussrechnung
Aktualisiert: 2023-06-27
> findR *
- Grundlagen zur Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen mit NumPy, z. B. im maschinellen Lernen
- Datenvisualisierung mit Matplotlib
- Ideal für Personen aus Wissenschaft, Ingenieurwesen und Datenanalyse
- Ideal zum Umstieg von Matlab auf Python
- Einführung anhand vieler Beispiele und Praxisfälle sowie Musterlösungen
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Dieses Buch vermittelt die Python-Grundlagen zur Lösung numerischer Probleme aus den Gebieten »Data Science« und »Maschinelles Lernen«.
Im ersten Teil geht es um NumPy als Basis der numerischen Programmierung mit Python. Eingehend behandelt werden Arrays als zentraler Datentyp für alles, Numerischen Operationen, Broadcasting und Ufuncs. Statistik und Wahrscheinlichkeitsrechnung ist ein eigenes Kapitel gewidmet, ebenso wie Boolscher Maskierung und File-Handling.
Die Datenvisualisierung mit Matplotlib bildet den Schwerpunkt des zweiten Teils. Zunächst geht es um die Begrif ichkeit von Matplotlib. Behandelt werden Linien-, Balkendiagramme, Histogramme und Konturplots.
Der dritte Teil dreht sich um Pandas mit seinen Series und DataFrames. Behandelt wird auch der Umgang mit verschiedensten Dateiformaten wie Excel, CSV und JSON sowie mit unvollständigen Daten und NaN. Aufgezeigt werden die Möglichkeiten der Datenvisualisierung direkt mit Pandas.
Der vierte Teil bietet Beispielanwendungen des erlernten Stoffes, wie z.B. ein Haushaltsbuch und eine praxistaugliche Einnahmeüberschussrechnung. Auch findet sich hier eine Einführung in Bildverarbeitungstechniken.
Fast jedes der 32 Kapitel enthält zusätzliche Übungen zum Erproben und Vertiefen des Erlernten, die zugehörigen Lösungen sind im fünften Teil zusammengefasst.
AUS DEM INHALT //
NumPy
• Numerische Operationen auf mehrdimensionalen Arrays
• Broadcasting und Ufuncs
Matplotlib:
• Diskrete und kontinuierliche Graphen
• Balken- und Säulendiagramme, Histogramme, Konturplots
Pandas:
• Series und DataFrames
• Arbeiten mit Excel-, csv- und JSON-Dateien
• Unvollständige Daten (NaN)
• Datenvisualisierung
Praxisbeispiele:
• Bildverarbeitung
• Haushaltsbuch und Einnahmeüberschussrechnung
Aktualisiert: 2023-06-20
> findR *
- Grundlagen zur Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen mit NumPy, z. B. im maschinellen Lernen
- Datenvisualisierung mit Matplotlib
- Ideal für Personen aus Wissenschaft, Ingenieurwesen und Datenanalyse
- Ideal zum Umstieg von Matlab auf Python
- Einführung anhand vieler Beispiele und Praxisfälle sowie Musterlösungen
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Dieses Buch vermittelt die Python-Grundlagen zur Lösung numerischer Probleme aus den Gebieten »Data Science« und »Maschinelles Lernen«.
Im ersten Teil geht es um NumPy als Basis der numerischen Programmierung mit Python. Eingehend behandelt werden Arrays als zentraler Datentyp für alles, Numerischen Operationen, Broadcasting und Ufuncs. Statistik und Wahrscheinlichkeitsrechnung ist ein eigenes Kapitel gewidmet, ebenso wie Boolscher Maskierung und File-Handling.
Die Datenvisualisierung mit Matplotlib bildet den Schwerpunkt des zweiten Teils. Zunächst geht es um die Begrif ichkeit von Matplotlib. Behandelt werden Linien-, Balkendiagramme, Histogramme und Konturplots.
Der dritte Teil dreht sich um Pandas mit seinen Series und DataFrames. Behandelt wird auch der Umgang mit verschiedensten Dateiformaten wie Excel, CSV und JSON sowie mit unvollständigen Daten und NaN. Aufgezeigt werden die Möglichkeiten der Datenvisualisierung direkt mit Pandas.
Der vierte Teil bietet Beispielanwendungen des erlernten Stoffes, wie z.B. ein Haushaltsbuch und eine praxistaugliche Einnahmeüberschussrechnung. Auch findet sich hier eine Einführung in Bildverarbeitungstechniken.
Fast jedes der 32 Kapitel enthält zusätzliche Übungen zum Erproben und Vertiefen des Erlernten, die zugehörigen Lösungen sind im fünften Teil zusammengefasst.
AUS DEM INHALT //
NumPy
• Numerische Operationen auf mehrdimensionalen Arrays
• Broadcasting und Ufuncs
Matplotlib:
• Diskrete und kontinuierliche Graphen
• Balken- und Säulendiagramme, Histogramme, Konturplots
Pandas:
• Series und DataFrames
• Arbeiten mit Excel-, csv- und JSON-Dateien
• Unvollständige Daten (NaN)
• Datenvisualisierung
Praxisbeispiele:
• Bildverarbeitung
• Haushaltsbuch und Einnahmeüberschussrechnung
Aktualisiert: 2023-06-20
> findR *
- Grundlagen zur Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen mit NumPy, z. B. im maschinellen Lernen
- Datenvisualisierung mit Matplotlib
- Ideal für Personen aus Wissenschaft, Ingenieurwesen und Datenanalyse
- Ideal zum Umstieg von Matlab auf Python
- Einführung anhand vieler Beispiele und Praxisfälle sowie Musterlösungen
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
Dieses Buch vermittelt die Python-Grundlagen zur Lösung numerischer Probleme aus den Gebieten »Data Science« und »Maschinelles Lernen«.
Im ersten Teil geht es um NumPy als Basis der numerischen Programmierung mit Python. Eingehend behandelt werden Arrays als zentraler Datentyp für alles, Numerischen Operationen, Broadcasting und Ufuncs. Statistik und Wahrscheinlichkeitsrechnung ist ein eigenes Kapitel gewidmet, ebenso wie Boolscher Maskierung und File-Handling.
Die Datenvisualisierung mit Matplotlib bildet den Schwerpunkt des zweiten Teils. Zunächst geht es um die Begrif ichkeit von Matplotlib. Behandelt werden Linien-, Balkendiagramme, Histogramme und Konturplots.
Der dritte Teil dreht sich um Pandas mit seinen Series und DataFrames. Behandelt wird auch der Umgang mit verschiedensten Dateiformaten wie Excel, CSV und JSON sowie mit unvollständigen Daten und NaN. Aufgezeigt werden die Möglichkeiten der Datenvisualisierung direkt mit Pandas.
Der vierte Teil bietet Beispielanwendungen des erlernten Stoffes, wie z.B. ein Haushaltsbuch und eine praxistaugliche Einnahmeüberschussrechnung. Auch findet sich hier eine Einführung in Bildverarbeitungstechniken.
Fast jedes der 32 Kapitel enthält zusätzliche Übungen zum Erproben und Vertiefen des Erlernten, die zugehörigen Lösungen sind im fünften Teil zusammengefasst.
AUS DEM INHALT //
NumPy
• Numerische Operationen auf mehrdimensionalen Arrays
• Broadcasting und Ufuncs
Matplotlib:
• Diskrete und kontinuierliche Graphen
• Balken- und Säulendiagramme, Histogramme, Konturplots
Pandas:
• Series und DataFrames
• Arbeiten mit Excel-, csv- und JSON-Dateien
• Unvollständige Daten (NaN)
• Datenvisualisierung
Praxisbeispiele:
• Bildverarbeitung
• Haushaltsbuch und Einnahmeüberschussrechnung
Aktualisiert: 2023-06-20
> findR *
Numerisches Python
- Grundlagen der Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
- Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
- Datenvisualisierung mit Matplotlib
- Ideal zum Umstieg von Matlab auf Python
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
Die 2. Auflage ist konsequent überabeitet und erweitert.
Aktualisiert: 2023-06-13
> findR *
Numerisches Python
- Grundlagen der Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
- Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
- Datenvisualisierung mit Matplotlib
- Ideal zum Umstieg von Matlab auf Python
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
Die 2. Auflage ist konsequent überabeitet und erweitert.
Aktualisiert: 2023-05-30
> findR *
Numerisches Python
- Grundlagen der Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
- Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
- Datenvisualisierung mit Matplotlib
- Ideal zum Umstieg von Matlab auf Python
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
Die 2. Auflage ist konsequent überabeitet und erweitert.
Aktualisiert: 2023-05-24
> findR *
Numerisches Python
- Grundlagen der Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
- Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
- Datenvisualisierung mit Matplotlib
- Ideal zum Umstieg von Matlab auf Python
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
Die 2. Auflage ist konsequent überabeitet und erweitert.
Aktualisiert: 2023-05-18
> findR *
Numerisches Python
- Grundlagen der Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
- Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
- Datenvisualisierung mit Matplotlib
- Ideal zum Umstieg von Matlab auf Python
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
Die 2. Auflage ist konsequent überabeitet und erweitert.
Aktualisiert: 2023-05-09
> findR *
Numerisches Python
- Grundlagen der Lösung numerischer Probleme mit Python
- Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
- Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
- Datenvisualisierung mit Matplotlib
- Ideal zum Umstieg von Matlab auf Python
- Ihr exklusiver Vorteil: E-Book inside beim Kauf des gedruckten Buches
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
Die 2. Auflage ist konsequent überabeitet und erweitert.
Aktualisiert: 2023-05-09
> findR *
Numerisches Python
• Grundlagen der Lösung numerischer Probleme mit Python• Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden• Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalysetätig sind• Datenvisualisierung mit Matplotlib• Ideal zum Umstieg von Matlab auf Python
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
AUS DEM INHALT //NumPy:Numerische Operationen auf mehrdimensionalen Arrays/Broadcasting/UfuncsMatplotlib:Diskrete und kontinuierliche Graphen/Balken- und Säulendiagramme/Histogramme/KonturplotsPandas:Series/DataFrames/Lesen, Schreiben und Bearbeiten von Excel- und csv-Dateien/Umgang mit unvollständigen Daten/Datenvisualisierung/Zeitserien
Aktualisiert: 2023-05-02
> findR *
Numerisches Python
• Grundlagen der Lösung numerischer Probleme mit Python• Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden• Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalysetätig sind• Datenvisualisierung mit Matplotlib• Ideal zum Umstieg von Matlab auf Python
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
AUS DEM INHALT //NumPy:Numerische Operationen auf mehrdimensionalen Arrays/Broadcasting/UfuncsMatplotlib:Diskrete und kontinuierliche Graphen/Balken- und Säulendiagramme/Histogramme/KonturplotsPandas:Series/DataFrames/Lesen, Schreiben und Bearbeiten von Excel- und csv-Dateien/Umgang mit unvollständigen Daten/Datenvisualisierung/Zeitserien
Aktualisiert: 2023-05-02
> findR *
Numerisches Python
• Grundlagen der Lösung numerischer Probleme mit Python
• Verarbeitung großer Datenmengen (»Big Data«) mit NumPy, wie sie beispielsweise im maschinellen Lernen Anwendung finden
• Zielgruppe sind Personen, die in der Wissenschaft, im Ingenieurwesen und in der Datenanalyse
tätig sind
• Datenvisualisierung mit Matplotlib
• Ideal zum Umstieg von Matlab auf Python
In diesem Buch stehen die numerischen Verfahren im Fokus, die im Gebiet »Data Science« und »Maschinelles Lernen« besonders benötigt werden. Python gehört zu den wichtigsten und am häufigsten benutzten Sprachen in diesem Gebiet und wird in Kombination mit seinen Modulen NumPy, SciPy, Matplotlib und Pandas häufiger verwendet als Matlab und R.
Der erste Teil des Buchs enthält eine kompakte Einführung in Python, eine ideale Zusammenfassung für diejenigen, die Python bereits kennen oder mit dem Buch »Einführung in Python 3« von Bernd Klein gelernt haben.
NumPy ist das zentrale Thema des zweiten Teils. Der Aufbau und das Arbeiten mit NumPy-Arrays bilden den Ausgangspunkt dieses Kapitels. Danach wird auf die besonderen Aspekte des dtype-Datentyps eingegangen. In einem weiteren Kapitel stehen die Numerischen Operationen, Broadcasting und Ufuncs von NumPy im Mittelpunkt.
Einigen Fragestellungen der Statistik und der Wahrscheinlichkeitsrechnung wurde ebenfalls ein Kapitel gewidmet. Auch auf die Boolesche Maskierung und Indizierung von NumPy-Arrays wird eingegangen. Der NumPy-Teil des Buchs schließt mit dem File-Handling von Daten.
AUS DEM INHALT //
NumPy:
Numerische Operationen auf mehrdimensionalen Arrays/Broadcasting/Ufuncs
Matplotlib:
Diskrete und kontinuierliche Graphen/Balken- und Säulendiagramme/Histogramme/Konturplots
Pandas:
Series/DataFrames/Lesen, Schreiben und Bearbeiten von Excel- und csv-Dateien/Umgang mit unvollständigen Daten/Datenvisualisierung/Zeitserien
EXTRA: E-Book inside. Systemvoraussetzungen für E-Book inside: Internet-Verbindung und Adobe-Reader oder Ebook-Reader bzw. Adobe Digital Editions.
Aktualisiert: 2022-10-11
> findR *
MEHR ANZEIGEN
Bücher zum Thema csv-Dateien mit Python
Sie suchen ein Buch über csv-Dateien mit Python? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema csv-Dateien mit Python. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema csv-Dateien mit Python im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema csv-Dateien mit Python einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
csv-Dateien mit Python - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema csv-Dateien mit Python, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter csv-Dateien mit Python und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.