Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-21
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-21
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-21
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-21
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-20
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-20
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-20
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-19
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-19
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-17
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-06-17
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-05-24
> findR *

Künstliche Intelligenz und Data Science in Theorie und Praxis

Künstliche Intelligenz und Data Science in Theorie und Praxis von Gillhuber,  Andreas, Hauner,  Wolfgang, Kauermann,  Göran
Im ersten Teil des Buchs werden die Methoden und Algorithmen skizziert, die sich größtenteils aus einer Kombination von Statistik und Informatik ergeben und auf Verfahren des Maschinellen Lernens bis hin zu Deep Learning und KI basieren. Im zweiten Teil wird die konzeptionelle Umsetzung in der Praxis skizziert: Hier wird insbesondere aufgezeigt, welche Herausforderungen in der Praxis auftreten – ob nun bei der Einbettung der Daten-Use-Cases in eine Gesamtstrategie oder bei der Produktivsetzung, Weiterentwicklung und dem Betrieb von Daten-basierten Lösungen. Der dritte Teil zeigt das breite Potpourri von Data Science in der Praxis: Branchengrößen wie Allianz, ADAC, BMW, Deutsche Bahn, Lufthansa, REWE, RTL, St. Galler Stadtwerke, SwissRe und viele weitere zeigen konkret, welche Erfahrungen sie bei ihren Projekten gesammelt haben. Fachartikel von über 20 namhaften Unternehmen decken die spezifischen Anforderungen ihrer jeweiligen Branchen ab. 
Aktualisiert: 2023-05-24
> findR *

Data Science mit AWS

Data Science mit AWS von Barth,  Antje, Fraaß,  Marcus, Fregly,  Chris
Von der ersten Idee bis zur konkreten Anwendung: Ihre Data-Science-Projekte in der AWS-Cloud realisieren Der US-Besteller zu Amazon Web Services jetzt auf Deutsch Beschreibt alle wichtigen Konzepte und die wichtigsten AWS-Dienste mit vielen Beispielen aus der Praxis Deckt den kompletten End-to-End-Prozess von der Entwicklung der Modelle bis zum ihrem konkreten Einsatz ab Mit Best Practices für alle Aspekte der Modellerstellung einschließlich Training, Deployment, Sicherheit und MLOps Mit diesem Buch lernen Machine-Learning- und KI-Praktiker, wie sie erfolgreich Data-Science-Projekte mit Amazon Web Services erstellen und in den produktiven Einsatz bringen. Es bietet einen detaillierten Einblick in den KI- und Machine-Learning-Stack von Amazon, der Data Science, Data Engineering und Anwendungsentwicklung vereint. Chris Fregly und Antje Barth beschreiben verständlich und umfassend, wie Sie das breite Spektrum an AWS-Tools nutzbringend für Ihre ML-Projekte einsetzen.Der praxisorientierte Leitfaden zeigt Ihnen konkret, wie Sie ML-Pipelines in der Cloud erstellen und die Ergebnisse dann innerhalb von Minuten in Anwendungen integrieren. Sie erfahren, wie Sie alle Teilschritte eines Workflows zu einer wiederverwendbaren MLOps-Pipeline bündeln, und Sie lernen zahlreiche reale Use Cases zum Beispiel aus den Bereichen Natural Language Processing, Computer Vision oder Betrugserkennung kennen. Im gesamten Buch wird zudem erläutert, wie Sie Kosten senken und die Performance Ihrer Anwendungen optimieren können.
Aktualisiert: 2023-05-08
> findR *

Data Science mit AWS

Data Science mit AWS von Barth,  Antje, Fraaß,  Marcus, Fregly,  Chris
Von der ersten Idee bis zur konkreten Anwendung: Ihre Data-Science-Projekte in der AWS-Cloud realisieren Der US-Besteller zu Amazon Web Services jetzt auf Deutsch Beschreibt alle wichtigen Konzepte und die wichtigsten AWS-Dienste mit vielen Beispielen aus der Praxis Deckt den kompletten End-to-End-Prozess von der Entwicklung der Modelle bis zum ihrem konkreten Einsatz ab Mit Best Practices für alle Aspekte der Modellerstellung einschließlich Training, Deployment, Sicherheit und MLOps Mit diesem Buch lernen Machine-Learning- und KI-Praktiker, wie sie erfolgreich Data-Science-Projekte mit Amazon Web Services erstellen und in den produktiven Einsatz bringen. Es bietet einen detaillierten Einblick in den KI- und Machine-Learning-Stack von Amazon, der Data Science, Data Engineering und Anwendungsentwicklung vereint. Chris Fregly und Antje Barth beschreiben verständlich und umfassend, wie Sie das breite Spektrum an AWS-Tools nutzbringend für Ihre ML-Projekte einsetzen.Der praxisorientierte Leitfaden zeigt Ihnen konkret, wie Sie ML-Pipelines in der Cloud erstellen und die Ergebnisse dann innerhalb von Minuten in Anwendungen integrieren. Sie erfahren, wie Sie alle Teilschritte eines Workflows zu einer wiederverwendbaren MLOps-Pipeline bündeln, und Sie lernen zahlreiche reale Use Cases zum Beispiel aus den Bereichen Natural Language Processing, Computer Vision oder Betrugserkennung kennen. Im gesamten Buch wird zudem erläutert, wie Sie Kosten senken und die Performance Ihrer Anwendungen optimieren können.
Aktualisiert: 2023-05-08
> findR *
MEHR ANZEIGEN

Bücher zum Thema Data Engineering

Sie suchen ein Buch über Data Engineering? Bei Buch findr finden Sie eine große Auswahl Bücher zum Thema Data Engineering. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher zum Thema Data Engineering im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zum Thema Data Engineering einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.

Data Engineering - Große Auswahl Bücher bei Buch findr

Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum Thema Data Engineering, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Unter Data Engineering und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.