Der Studierende des Faches Mathematik steht häufig vor dem Problem: Wozu sind die mathematischen Begriffe, Sätze und Denkweisen gut, die in großer Vielzahl auf ihn ein stürmen? Wozu werden die Ergebnisse gebraucht, flir welche weiteren überlegungen sind sie wiederum Grundlage und Ausgangspunkt? Die vorliegende Einführung in die Analysis hat zum Ziel, dem Leser bei diesen Frage stellungen zu helfen, ihm Beweggründe flir die wichtigsten Grundbegriffe, Ansätze und Ziele der Differential- und Integralrechnung zu vermitteln. Als Schlüsselproblem erweist sich dabei die Frage nach den Lösungen von Gleichungen und Gleichungssystemen. Hiervon ausgehend werden Abbildungsbegriff, Konvergenzbe griff (Iteration), Stetigkeit (Lösungsexistenz ), Differenzierbarkeit (Newton-Verfahren) und vieles mehr erschlossen. Andere Inhalte wurzeln auf natürliche Weise in geometri schen Fragestellungen, wie die Integralrechnung (Flächeninhaltsberechnung) und die trigonometrischen Funktionen (Entfernungsbestimmung). Der Leser erhält damit eine Richtschnur in die Hand, mit der sich die Differential- und Integralrechnung überschau bar gliedert. Bei der Stoffauswahl wurden Inhalte bevorzugt, die einerseits breiten Anwendungsbezug haben, andererseits vorbereitend zu Begriffsbildungen der höheren Analysis hinführen, insbesondere zur Funktionalanalysis, wie z. B. der Banachsche Fixpunktsatz, der Bor suksche Antipodensatz, der Brouwersche Fixpunktsatz, das Newton-Verfahren für mehrere Veränderliche und anderes mehr. Die numerischen Verfahren, die in diesem Buch behandelt werden, lassen sich bequem auf Kleinrechnern durchführen, wie sie heute in der Schule vielfach verwendet werden. Schließlich sei erwähnt, daß bei der Einführung der Konvergenz wie auch der Stetigkeit ein neuer Weg beschritten wird.
Aktualisiert: 2023-07-03
> findR *
Der Studierende des Faches Mathematik steht häufig vor dem Problem: Wozu sind die mathematischen Begriffe, Sätze und Denkweisen gut, die in großer Vielzahl auf ihn ein stürmen? Wozu werden die Ergebnisse gebraucht, flir welche weiteren überlegungen sind sie wiederum Grundlage und Ausgangspunkt? Die vorliegende Einführung in die Analysis hat zum Ziel, dem Leser bei diesen Frage stellungen zu helfen, ihm Beweggründe flir die wichtigsten Grundbegriffe, Ansätze und Ziele der Differential- und Integralrechnung zu vermitteln. Als Schlüsselproblem erweist sich dabei die Frage nach den Lösungen von Gleichungen und Gleichungssystemen. Hiervon ausgehend werden Abbildungsbegriff, Konvergenzbe griff (Iteration), Stetigkeit (Lösungsexistenz ), Differenzierbarkeit (Newton-Verfahren) und vieles mehr erschlossen. Andere Inhalte wurzeln auf natürliche Weise in geometri schen Fragestellungen, wie die Integralrechnung (Flächeninhaltsberechnung) und die trigonometrischen Funktionen (Entfernungsbestimmung). Der Leser erhält damit eine Richtschnur in die Hand, mit der sich die Differential- und Integralrechnung überschau bar gliedert. Bei der Stoffauswahl wurden Inhalte bevorzugt, die einerseits breiten Anwendungsbezug haben, andererseits vorbereitend zu Begriffsbildungen der höheren Analysis hinführen, insbesondere zur Funktionalanalysis, wie z. B. der Banachsche Fixpunktsatz, der Bor suksche Antipodensatz, der Brouwersche Fixpunktsatz, das Newton-Verfahren für mehrere Veränderliche und anderes mehr. Die numerischen Verfahren, die in diesem Buch behandelt werden, lassen sich bequem auf Kleinrechnern durchführen, wie sie heute in der Schule vielfach verwendet werden. Schließlich sei erwähnt, daß bei der Einführung der Konvergenz wie auch der Stetigkeit ein neuer Weg beschritten wird.
Aktualisiert: 2023-07-03
> findR *
Der Studierende des Faches Mathematik steht häufig vor dem Problem: Wozu sind die mathematischen Begriffe, Sätze und Denkweisen gut, die in großer Vielzahl auf ihn ein stürmen? Wozu werden die Ergebnisse gebraucht, flir welche weiteren überlegungen sind sie wiederum Grundlage und Ausgangspunkt? Die vorliegende Einführung in die Analysis hat zum Ziel, dem Leser bei diesen Frage stellungen zu helfen, ihm Beweggründe flir die wichtigsten Grundbegriffe, Ansätze und Ziele der Differential- und Integralrechnung zu vermitteln. Als Schlüsselproblem erweist sich dabei die Frage nach den Lösungen von Gleichungen und Gleichungssystemen. Hiervon ausgehend werden Abbildungsbegriff, Konvergenzbe griff (Iteration), Stetigkeit (Lösungsexistenz ), Differenzierbarkeit (Newton-Verfahren) und vieles mehr erschlossen. Andere Inhalte wurzeln auf natürliche Weise in geometri schen Fragestellungen, wie die Integralrechnung (Flächeninhaltsberechnung) und die trigonometrischen Funktionen (Entfernungsbestimmung). Der Leser erhält damit eine Richtschnur in die Hand, mit der sich die Differential- und Integralrechnung überschau bar gliedert. Bei der Stoffauswahl wurden Inhalte bevorzugt, die einerseits breiten Anwendungsbezug haben, andererseits vorbereitend zu Begriffsbildungen der höheren Analysis hinführen, insbesondere zur Funktionalanalysis, wie z. B. der Banachsche Fixpunktsatz, der Bor suksche Antipodensatz, der Brouwersche Fixpunktsatz, das Newton-Verfahren für mehrere Veränderliche und anderes mehr. Die numerischen Verfahren, die in diesem Buch behandelt werden, lassen sich bequem auf Kleinrechnern durchführen, wie sie heute in der Schule vielfach verwendet werden. Schließlich sei erwähnt, daß bei der Einführung der Konvergenz wie auch der Stetigkeit ein neuer Weg beschritten wird.
Aktualisiert: 2023-07-03
> findR *
In diesem Lehrbuch werden die für die Wirtschaftsmathematik, insbesondere für die Optimierungstheorie, Stochastik und Numerik, erforderlichen Grundlagen der Funktionalanalysis in einer anschaulichen Form mit Bezügen zu den entsprechenden Anwendungen in jedem Kapitel dargestellt. Dabei wird eine Untergliederung entsprechend der für die Wirtschaftsmathematik relevanten Hauptsätze der Funktionalanalysis, wie Baire's Kategoriesatz, Approximations- und Projektionssatz, Hahn-Banach-Theorem, Fixpunktaussagen und KKM-Theorem und Variationsprinzipien, vorgenommen.
Aktualisiert: 2023-07-02
> findR *
In diesem Lehrbuch werden die für die Wirtschaftsmathematik, insbesondere für die Optimierungstheorie, Stochastik und Numerik, erforderlichen Grundlagen der Funktionalanalysis in einer anschaulichen Form mit Bezügen zu den entsprechenden Anwendungen in jedem Kapitel dargestellt. Dabei wird eine Untergliederung entsprechend der für die Wirtschaftsmathematik relevanten Hauptsätze der Funktionalanalysis, wie Baire's Kategoriesatz, Approximations- und Projektionssatz, Hahn-Banach-Theorem, Fixpunktaussagen und KKM-Theorem und Variationsprinzipien, vorgenommen.
Aktualisiert: 2023-07-02
> findR *
In diesem Lehrbuch werden die für die Wirtschaftsmathematik, insbesondere für die Optimierungstheorie, Stochastik und Numerik, erforderlichen Grundlagen der Funktionalanalysis in einer anschaulichen Form mit Bezügen zu den entsprechenden Anwendungen in jedem Kapitel dargestellt. Dabei wird eine Untergliederung entsprechend der für die Wirtschaftsmathematik relevanten Hauptsätze der Funktionalanalysis, wie Baire's Kategoriesatz, Approximations- und Projektionssatz, Hahn-Banach-Theorem, Fixpunktaussagen und KKM-Theorem und Variationsprinzipien, vorgenommen.
Aktualisiert: 2023-07-02
> findR *
Das Teubner-Taschenbuch der Mathematik erfüllt aktuell, umfassend und kompakt alle Erwartungen, die an ein mathematisches Nachschlagewerk gestellt werden. Es vermittelt ein lebendiges und modernes Bild der heutigen Mathematik. Als Handbuch begleitet es die Studierenden vom ersten Semester an und der Praktiker nutzt es als unentbehrliches Nachschlagewerk. Der Teil II dieses erfolgreichen Werkes behandelt die vielfältigen
Anwendungen der Mathematik in Informatik, Operations Research und mathematischer Physik. Das thematische Spektrum reicht von Tensoranalysis, Maßtheorie und Funktionalanalysis über Dynamische Systeme und Variationsrechnung bis zu Mannigfaltigkeiten, Riemannscher Geometrie, Liegruppen und Topologie.
Aktualisiert: 2023-07-03
> findR *
Das Teubner-Taschenbuch der Mathematik erfüllt aktuell, umfassend und kompakt alle Erwartungen, die an ein mathematisches Nachschlagewerk gestellt werden. Es vermittelt ein lebendiges und modernes Bild der heutigen Mathematik. Als Handbuch begleitet es die Studierenden vom ersten Semester an und der Praktiker nutzt es als unentbehrliches Nachschlagewerk. Der Teil II dieses erfolgreichen Werkes behandelt die vielfältigen
Anwendungen der Mathematik in Informatik, Operations Research und mathematischer Physik. Das thematische Spektrum reicht von Tensoranalysis, Maßtheorie und Funktionalanalysis über Dynamische Systeme und Variationsrechnung bis zu Mannigfaltigkeiten, Riemannscher Geometrie, Liegruppen und Topologie.
Aktualisiert: 2023-07-03
> findR *
Das Teubner-Taschenbuch der Mathematik erfüllt aktuell, umfassend und kompakt alle Erwartungen, die an ein mathematisches Nachschlagewerk gestellt werden. Es vermittelt ein lebendiges und modernes Bild der heutigen Mathematik. Als Handbuch begleitet es die Studierenden vom ersten Semester an und der Praktiker nutzt es als unentbehrliches Nachschlagewerk. Der Teil II dieses erfolgreichen Werkes behandelt die vielfältigen
Anwendungen der Mathematik in Informatik, Operations Research und mathematischer Physik. Das thematische Spektrum reicht von Tensoranalysis, Maßtheorie und Funktionalanalysis über Dynamische Systeme und Variationsrechnung bis zu Mannigfaltigkeiten, Riemannscher Geometrie, Liegruppen und Topologie.
Aktualisiert: 2023-07-03
> findR *
Das Teubner-Taschenbuch der Mathematik erfüllt aktuell, umfassend und kompakt alle Erwartungen, die an ein mathematisches Nachschlagewerk gestellt werden. Es vermittelt ein lebendiges und modernes Bild der heutigen Mathematik. Als Handbuch begleitet es die Studierenden vom ersten Semester an und der Praktiker nutzt es als unentbehrliches Nachschlagewerk. Der Teil II dieses erfolgreichen Werkes behandelt die vielfältigen
Anwendungen der Mathematik in Informatik, Operations Research und mathematischer Physik. Das thematische Spektrum reicht von Tensoranalysis, Maßtheorie und Funktionalanalysis über Dynamische Systeme und Variationsrechnung bis zu Mannigfaltigkeiten, Riemannscher Geometrie, Liegruppen und Topologie.
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Das zweibändige Werk umfasst den gesamten Stoff von in der „Analysis“ üblichen Vorlesungen für einen sechssemestrigen Bachelor-Studiengang der Mathematik. Die Bücher sind vorlesungsnah aufgebaut und bilden die Vorlesungen exakt ab. Jeder Band enthält Beispiele und zusätzlich ein Kapitel "Prüfungsfragen", das Studierende auf mündliche und schriftliche Prüfungen vorbereiten soll. Das Werk ist ein Kompendium der Analysis und eignet sich als Lehr- und Nachschlagewerk sowohl für Studierende als auch für Dozenten.
Aktualisiert: 2023-07-02
> findR *
Das zweibändige Werk umfasst den gesamten Stoff von in der „Analysis“ üblichen Vorlesungen für einen sechssemestrigen Bachelor-Studiengang der Mathematik. Die Bücher sind vorlesungsnah aufgebaut und bilden die Vorlesungen exakt ab. Jeder Band enthält Beispiele und zusätzlich ein Kapitel "Prüfungsfragen", das Studierende auf mündliche und schriftliche Prüfungen vorbereiten soll. Das Werk ist ein Kompendium der Analysis und eignet sich als Lehr- und Nachschlagewerk sowohl für Studierende als auch für Dozenten.
Aktualisiert: 2023-07-02
> findR *
Das vorliegende Buch stellt eine Einführung in die Theorie der Distributionen (verallge meinerte Funktionen) und ihrer Anwendungen in der Physik dar. Der zum Verständnis der Theorie notwendige topologische Apparat wurde auf ein Minimum reduziert. Lediglich das erste Kapitel gibt eine Einführung in die Theorie der abzählbar normierten Räume. Es wird angenommen, daß der Leser vertraut mit den elementaren Begriffen der Funktionalanalysis (Hilbert- und Banachraum) ist. Das Buch enthält die bereits klassisch gewordenen Kapitel der Theorie der Distributionen, wie: Lokale Eigenschaften von Distributionen, Distributionen mit kompaktem Träger, temperierte Distributionen, Regularisierung divergenter Integrale, Fourier- und Fourier Laplace-Transformation, den Satz von Paley-Wiener-Schwartz, Distributionen als Rand werte analytischer Funktionen usw. In Kapitel 11 werden Distributionen untersucht, die auf Flächen konzentriert sind; insbesondere auf dem Lichtkegel konzentrierte Distri butionen. In den Kapiteln 8, 9, 10 werden verschiedene Anwendungen der Theorie der Distributionen in der relativistischen Physik (Feldtheorie) entwickelt. Kapitel 12 schließlich enthält Probleme der Theorie der Distributionen im Hilbertraum und ihre Anwendungen in der Quantenphysik (Vertauschungsrelationen, Fock-Raum, Quanten feldtheorie usw.). Das Buch wendet sich sowohl an Mathematiker, die auch die Anwendungen der Theorie der Distributionen in der Physik kennenlernen wollen; als auch an Physiker, die sich für die Theorie der Distributionen als Teilgebiet der mathematischen und theoretischen Physik interessieren. Das vorliegende Buch entstand aus Vorlesungen, die ich im Jahre 1970 als Humboldt Stipendiat an der Universität München gehalten habe. Mein besonderer Dank gilt daher an dieser Stelle Herrn Prof. Dr. W. Güttinger für die Unterstützung in meinen ersten Arbeitsjahren in Deutschland.
Aktualisiert: 2023-07-02
> findR *
Das vorliegende Buch stellt eine Einführung in die Theorie der Distributionen (verallge meinerte Funktionen) und ihrer Anwendungen in der Physik dar. Der zum Verständnis der Theorie notwendige topologische Apparat wurde auf ein Minimum reduziert. Lediglich das erste Kapitel gibt eine Einführung in die Theorie der abzählbar normierten Räume. Es wird angenommen, daß der Leser vertraut mit den elementaren Begriffen der Funktionalanalysis (Hilbert- und Banachraum) ist. Das Buch enthält die bereits klassisch gewordenen Kapitel der Theorie der Distributionen, wie: Lokale Eigenschaften von Distributionen, Distributionen mit kompaktem Träger, temperierte Distributionen, Regularisierung divergenter Integrale, Fourier- und Fourier Laplace-Transformation, den Satz von Paley-Wiener-Schwartz, Distributionen als Rand werte analytischer Funktionen usw. In Kapitel 11 werden Distributionen untersucht, die auf Flächen konzentriert sind; insbesondere auf dem Lichtkegel konzentrierte Distri butionen. In den Kapiteln 8, 9, 10 werden verschiedene Anwendungen der Theorie der Distributionen in der relativistischen Physik (Feldtheorie) entwickelt. Kapitel 12 schließlich enthält Probleme der Theorie der Distributionen im Hilbertraum und ihre Anwendungen in der Quantenphysik (Vertauschungsrelationen, Fock-Raum, Quanten feldtheorie usw.). Das Buch wendet sich sowohl an Mathematiker, die auch die Anwendungen der Theorie der Distributionen in der Physik kennenlernen wollen; als auch an Physiker, die sich für die Theorie der Distributionen als Teilgebiet der mathematischen und theoretischen Physik interessieren. Das vorliegende Buch entstand aus Vorlesungen, die ich im Jahre 1970 als Humboldt Stipendiat an der Universität München gehalten habe. Mein besonderer Dank gilt daher an dieser Stelle Herrn Prof. Dr. W. Güttinger für die Unterstützung in meinen ersten Arbeitsjahren in Deutschland.
Aktualisiert: 2023-07-02
> findR *
Das vorliegende Buch stellt eine Einführung in die Theorie der Distributionen (verallge meinerte Funktionen) und ihrer Anwendungen in der Physik dar. Der zum Verständnis der Theorie notwendige topologische Apparat wurde auf ein Minimum reduziert. Lediglich das erste Kapitel gibt eine Einführung in die Theorie der abzählbar normierten Räume. Es wird angenommen, daß der Leser vertraut mit den elementaren Begriffen der Funktionalanalysis (Hilbert- und Banachraum) ist. Das Buch enthält die bereits klassisch gewordenen Kapitel der Theorie der Distributionen, wie: Lokale Eigenschaften von Distributionen, Distributionen mit kompaktem Träger, temperierte Distributionen, Regularisierung divergenter Integrale, Fourier- und Fourier Laplace-Transformation, den Satz von Paley-Wiener-Schwartz, Distributionen als Rand werte analytischer Funktionen usw. In Kapitel 11 werden Distributionen untersucht, die auf Flächen konzentriert sind; insbesondere auf dem Lichtkegel konzentrierte Distri butionen. In den Kapiteln 8, 9, 10 werden verschiedene Anwendungen der Theorie der Distributionen in der relativistischen Physik (Feldtheorie) entwickelt. Kapitel 12 schließlich enthält Probleme der Theorie der Distributionen im Hilbertraum und ihre Anwendungen in der Quantenphysik (Vertauschungsrelationen, Fock-Raum, Quanten feldtheorie usw.). Das Buch wendet sich sowohl an Mathematiker, die auch die Anwendungen der Theorie der Distributionen in der Physik kennenlernen wollen; als auch an Physiker, die sich für die Theorie der Distributionen als Teilgebiet der mathematischen und theoretischen Physik interessieren. Das vorliegende Buch entstand aus Vorlesungen, die ich im Jahre 1970 als Humboldt Stipendiat an der Universität München gehalten habe. Mein besonderer Dank gilt daher an dieser Stelle Herrn Prof. Dr. W. Güttinger für die Unterstützung in meinen ersten Arbeitsjahren in Deutschland.
Aktualisiert: 2023-07-02
> findR *
Das Lehrbuch vermittelt solides Basiswissen zu den thematischen Schwerpunkten Produktmaße, Fourier-Transformation, Transformationsformel, Konvergenzbegriffe, absolute Stetigkeit und Maße auf topologischen Räumen. Höhepunkte sind die Herleitung des Riesz’schen Darstellungssatzes und der Beweis der Existenz und Eindeutigkeit des Haar’schen Maßes. Der Band enthält ferner mathematikhistorische Ausflüge und Kurzporträts von Mathematikern, die zum Thema des Buchs wichtige Beiträge geliefert haben, sowie zahlreiche Übungsaufgaben zur Vertiefung des Stoffs.
Aktualisiert: 2023-07-02
> findR *
Das Lehrbuch vermittelt solides Basiswissen zu den thematischen Schwerpunkten Produktmaße, Fourier-Transformation, Transformationsformel, Konvergenzbegriffe, absolute Stetigkeit und Maße auf topologischen Räumen. Höhepunkte sind die Herleitung des Riesz’schen Darstellungssatzes und der Beweis der Existenz und Eindeutigkeit des Haar’schen Maßes. Der Band enthält ferner mathematikhistorische Ausflüge und Kurzporträts von Mathematikern, die zum Thema des Buchs wichtige Beiträge geliefert haben, sowie zahlreiche Übungsaufgaben zur Vertiefung des Stoffs.
Aktualisiert: 2023-07-02
> findR *
MEHR ANZEIGEN
Bücher zum Thema Funktionalanalysis
Sie suchen ein Buch über Funktionalanalysis? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Funktionalanalysis. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Funktionalanalysis im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Funktionalanalysis einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Funktionalanalysis - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Funktionalanalysis, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Funktionalanalysis und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.