Beitrag zu iterativ lernenden modellprädiktiven Regelungen

Beitrag zu iterativ lernenden modellprädiktiven Regelungen von Kennel,  Fabian
In der Industrie laufen viele Prozesse zyklisch und damit wiederholend ab. Eine hohe Regelgüte ist hierbei unabdingbar. Daher kommen iterativ lernende Regelungsmethoden zum Einsatz, welche die Regelung des Prozesses zyklisch verbessern. In dieser Dissertation werden iterativ lernende modellprädiktive Regelungsverfahren vorgestellt. Die entwickelten Methoden ermöglichen durch ihre modellbasierte Struktur eine zyklische Steigerung der Regelgüte bei gleichzeitiger Berücksichtigung der Systembeschränkungen. Zyklische unbekannte Störungen und Dynamiken lassen sich hiermit iterativ erlernen und unterdrücken. Eine Robustifizierung der Verfahren gegenüber Messrauschen sowie Unsicherheiten wird in dieser Arbeit aufgezeigt. Rechenzeit und Speicherbedarf stellen die größten Herausforderungen der optimierungsbasierten Verfahren dar. Verschiedene effiziente Ansätze zur Reduktion von Speicher- und Rechenbedarf werden in der Dissertation dargelegt. In den optimierungsbasierten Entwurf lassen sich weitere Optimierungsziele einbinden. Gerade für industrielle Prozesse stellt eine Reduktion des Energiebedarfs sowie eine Reduktion der Prozesszeiten ein wichtiges Optimierungskriterium dar. Diese Kriterien können in einfacher Weise in die entwickelten Verfahren integriert werden. Je nach Prozess sind Energieeinsparungen von über 50 % realisierbar. Die Prozesszeiten lassen sich teilweise mehr als halbieren. Die Verfahren selbst wurden an drei Beispielsystemen praktisch erprobt. Die Ergebnisse sind zufriedenstellend und für die Industrie von praktischer Relevanz.
Aktualisiert: 2023-05-15
> findR *

Modellbasierte iterativ lernende Regelung mit geschätzten Systemgrößen für mehraxiale Festigkeitsprüfstände

Modellbasierte iterativ lernende Regelung mit geschätzten Systemgrößen für mehraxiale Festigkeitsprüfstände von Müller,  Tino
Die vorliegende Arbeit behandelt iterativ lernende Regelverfahren für mehrkanalige Fahrzeugprüfstände. Durch die schrittweise Adaption der Vorgabesignale erfolgt eine Annäherung der Belastungen am Prüfstand an reale Fahrversuchsdaten. Die systembedingten Kanalkopplungen begründen Störeinflüsse, die das Regelverhalten beeinträchtigen und dadurch Prüflinge aufgrund vieler Iterationen stark vorbelasten. Die vorgestellten Verfahren beruhen auf einer modellbasierten Schätzung und Kompensation dieser Störeinflüsse mit dem Ziel, die Anzahl an Iterationen zu reduzieren.
Aktualisiert: 2021-01-06
> findR *

Beitrag zu iterativ lernenden modellprädiktiven Regelungen

Beitrag zu iterativ lernenden modellprädiktiven Regelungen von Kennel,  Fabian
In der Industrie laufen viele Prozesse zyklisch und damit wiederholend ab. Eine hohe Regelgüte ist hierbei unabdingbar. Daher kommen iterativ lernende Regelungsmethoden zum Einsatz, welche die Regelung des Prozesses zyklisch verbessern. In dieser Dissertation werden iterativ lernende modellprädiktive Regelungsverfahren vorgestellt. Die entwickelten Methoden ermöglichen durch ihre modellbasierte Struktur eine zyklische Steigerung der Regelgüte bei gleichzeitiger Berücksichtigung der Systembeschränkungen. Zyklische unbekannte Störungen und Dynamiken lassen sich hiermit iterativ erlernen und unterdrücken. Eine Robustifizierung der Verfahren gegenüber Messrauschen sowie Unsicherheiten wird in dieser Arbeit aufgezeigt. Rechenzeit und Speicherbedarf stellen die größten Herausforderungen der optimierungsbasierten Verfahren dar. Verschiedene effiziente Ansätze zur Reduktion von Speicher- und Rechenbedarf werden in der Dissertation dargelegt. In den optimierungsbasierten Entwurf lassen sich weitere Optimierungsziele einbinden. Gerade für industrielle Prozesse stellt eine Reduktion des Energiebedarfs sowie eine Reduktion der Prozesszeiten ein wichtiges Optimierungskriterium dar. Diese Kriterien können in einfacher Weise in die entwickelten Verfahren integriert werden. Je nach Prozess sind Energieeinsparungen von über 50 % realisierbar. Die Prozesszeiten lassen sich teilweise mehr als halbieren. Die Verfahren selbst wurden an drei Beispielsystemen praktisch erprobt. Die Ergebnisse sind zufriedenstellend und für die Industrie von praktischer Relevanz.
Aktualisiert: 2023-04-17
> findR *
MEHR ANZEIGEN

Bücher zum Thema Iterativ lernende Regelung

Sie suchen ein Buch über Iterativ lernende Regelung? Bei Buch findr finden Sie eine große Auswahl Bücher zum Thema Iterativ lernende Regelung. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher zum Thema Iterativ lernende Regelung im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zum Thema Iterativ lernende Regelung einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.

Iterativ lernende Regelung - Große Auswahl Bücher bei Buch findr

Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum Thema Iterativ lernende Regelung, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Unter Iterativ lernende Regelung und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.