Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Die Rand- und Eigenwertprobleme der Mathematischen Physik lassen sich fast alle in Integralgleichungen umformen. Der Aufbau der Theorie der Integralgleichungen durch 1. Fredholm, D. Hilbert und E. Schmidt zu Beginn unseres Jahrhunderts brachte daher große Fortschritte für die Mathematische Physik. Obwohl später andere und zum Teil weit reichendere Methoden gefunden worden sind, ist die Integralgleichungsmethode noch heute ein wirkungsvolles und vor allem in der Physik und den Ingenieurwissenschaften viel benutztes Instrument zur Behandlung solcher Probleme. Mit den Integralgleichungen begann die Entwicklung der heutigen Funktionalanalysis, deren Hauptgegenstand die Untersuchung der linearen Operatoren von einem topologischen Vektorraum in einen anderen ist. Die Theorie der Integralgleichungen erscheint in diesem Rahmen als Spezialfall: Die betrachteten Vektorräume sind hier Banachsche Funktionen räume, die Operatoren Integraloperatoren. Das Eigenwertproblem für eine Integralgleichung erweist sich als Spezialfall der Spektraltheorie linearer Operatoren. Die Verwendung der Begriffe und Methoden der Funktionalanalysis macht die Theorie der Integralgleichungen nicht nur einheitlicher und durchsichtiger, sie vereinfacht und erweitert sie so wesentlich, daß eine moderne Darstellung ohne diese Elemente nicht denkbar ist. Andererseits genügt es nicht, die Theorie der Integralgleichungen als Nebenprodukt oder Beispielsammlung im Rahmen der Funktionalanalysis abzuhandeln; eine solche Auffassung wird den Erforder nissen der Anwendungen nicht gerecht. Im vorliegenden Buch wird daher ein mittlerer Weg eingeschlagen: Es wird eine Einführung in die Funktionalanalysis vorausgeschickt, die in Umfang und Stoff auswahl auf die Integraloperatoren zugeschnitten ist; darauf folgt eine Theorie der Integraloperatoren mit ausführlicher Darstellung der typischen Anwendungen.
Aktualisiert: 2023-07-02
> findR *
Die Rand- und Eigenwertprobleme der Mathematischen Physik lassen sich fast alle in Integralgleichungen umformen. Der Aufbau der Theorie der Integralgleichungen durch 1. Fredholm, D. Hilbert und E. Schmidt zu Beginn unseres Jahrhunderts brachte daher große Fortschritte für die Mathematische Physik. Obwohl später andere und zum Teil weit reichendere Methoden gefunden worden sind, ist die Integralgleichungsmethode noch heute ein wirkungsvolles und vor allem in der Physik und den Ingenieurwissenschaften viel benutztes Instrument zur Behandlung solcher Probleme. Mit den Integralgleichungen begann die Entwicklung der heutigen Funktionalanalysis, deren Hauptgegenstand die Untersuchung der linearen Operatoren von einem topologischen Vektorraum in einen anderen ist. Die Theorie der Integralgleichungen erscheint in diesem Rahmen als Spezialfall: Die betrachteten Vektorräume sind hier Banachsche Funktionen räume, die Operatoren Integraloperatoren. Das Eigenwertproblem für eine Integralgleichung erweist sich als Spezialfall der Spektraltheorie linearer Operatoren. Die Verwendung der Begriffe und Methoden der Funktionalanalysis macht die Theorie der Integralgleichungen nicht nur einheitlicher und durchsichtiger, sie vereinfacht und erweitert sie so wesentlich, daß eine moderne Darstellung ohne diese Elemente nicht denkbar ist. Andererseits genügt es nicht, die Theorie der Integralgleichungen als Nebenprodukt oder Beispielsammlung im Rahmen der Funktionalanalysis abzuhandeln; eine solche Auffassung wird den Erforder nissen der Anwendungen nicht gerecht. Im vorliegenden Buch wird daher ein mittlerer Weg eingeschlagen: Es wird eine Einführung in die Funktionalanalysis vorausgeschickt, die in Umfang und Stoff auswahl auf die Integraloperatoren zugeschnitten ist; darauf folgt eine Theorie der Integraloperatoren mit ausführlicher Darstellung der typischen Anwendungen.
Aktualisiert: 2023-07-02
> findR *
Die Rand- und Eigenwertprobleme der Mathematischen Physik lassen sich fast alle in Integralgleichungen umformen. Der Aufbau der Theorie der Integralgleichungen durch 1. Fredholm, D. Hilbert und E. Schmidt zu Beginn unseres Jahrhunderts brachte daher große Fortschritte für die Mathematische Physik. Obwohl später andere und zum Teil weit reichendere Methoden gefunden worden sind, ist die Integralgleichungsmethode noch heute ein wirkungsvolles und vor allem in der Physik und den Ingenieurwissenschaften viel benutztes Instrument zur Behandlung solcher Probleme. Mit den Integralgleichungen begann die Entwicklung der heutigen Funktionalanalysis, deren Hauptgegenstand die Untersuchung der linearen Operatoren von einem topologischen Vektorraum in einen anderen ist. Die Theorie der Integralgleichungen erscheint in diesem Rahmen als Spezialfall: Die betrachteten Vektorräume sind hier Banachsche Funktionen räume, die Operatoren Integraloperatoren. Das Eigenwertproblem für eine Integralgleichung erweist sich als Spezialfall der Spektraltheorie linearer Operatoren. Die Verwendung der Begriffe und Methoden der Funktionalanalysis macht die Theorie der Integralgleichungen nicht nur einheitlicher und durchsichtiger, sie vereinfacht und erweitert sie so wesentlich, daß eine moderne Darstellung ohne diese Elemente nicht denkbar ist. Andererseits genügt es nicht, die Theorie der Integralgleichungen als Nebenprodukt oder Beispielsammlung im Rahmen der Funktionalanalysis abzuhandeln; eine solche Auffassung wird den Erforder nissen der Anwendungen nicht gerecht. Im vorliegenden Buch wird daher ein mittlerer Weg eingeschlagen: Es wird eine Einführung in die Funktionalanalysis vorausgeschickt, die in Umfang und Stoff auswahl auf die Integraloperatoren zugeschnitten ist; darauf folgt eine Theorie der Integraloperatoren mit ausführlicher Darstellung der typischen Anwendungen.
Aktualisiert: 2023-07-02
> findR *
Wie im ersten Band ihres Werkes stellen die Autoren die mathematischen Grundlagen der Physik in gut zugänglicher und ansprechender Form dar. Das Buch eignet sich sowohl für das Selbststudium als auch zur Begleitung von Vorlesungen.
Aktualisiert: 2023-07-03
> findR *
Wie im ersten Band ihres Werkes stellen die Autoren die mathematischen Grundlagen der Physik in gut zugänglicher und ansprechender Form dar. Das Buch eignet sich sowohl für das Selbststudium als auch zur Begleitung von Vorlesungen.
Aktualisiert: 2023-07-03
> findR *
Wie im ersten Band ihres Werkes stellen die Autoren die mathematischen Grundlagen der Physik in gut zugänglicher und ansprechender Form dar. Das Buch eignet sich sowohl für das Selbststudium als auch zur Begleitung von Vorlesungen.
Aktualisiert: 2023-07-03
> findR *
In diesem Buch findet der Leser neben dem üblichen Grundkanon der Linearen Algebra auch weitertragende Ergänzungen, die die Querverbindungen zu anderen Gebieten deutlich machen und zum tieferen Verständnis der Grundbegriffe und Methoden hilfreich sind.Besonderer Wert wird dabei auf eine umfangreiche Darstellung vielseitiger, interessanter und moderner Anwendungen gelegt: Diese stammen vor allem aus den Gebieten Kryptographie, Codierungstheorie, Mathematische Physik sowie Stochastische Prozesse. Mit seiner breiten thematischen Auswahl und vielen Beispielen ist das Buch auch zum Selbststudium und als Nachschlagewerk gut geeignet.
Aktualisiert: 2023-07-02
> findR *
Als mehrbändiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie für wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehre gedacht. Es ergänzt das einbändige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil IV des Springer-Handbuchs enthält die folgenden Zusatzkapitel zum Springer-Taschenbuch: Höhere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitätstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krümmung und Analysis.
Aktualisiert: 2023-06-25
> findR *
Als mehrbändiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie für wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehre gedacht. Es ergänzt das einbändige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil IV des Springer-Handbuchs enthält die folgenden Zusatzkapitel zum Springer-Taschenbuch: Höhere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitätstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krümmung und Analysis.
Aktualisiert: 2023-06-25
> findR *
Als mehrbändiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie für wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehre gedacht. Es ergänzt das einbändige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil IV des Springer-Handbuchs enthält die folgenden Zusatzkapitel zum Springer-Taschenbuch: Höhere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitätstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krümmung und Analysis.
Aktualisiert: 2023-06-25
> findR *
Als mehrbändiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie für wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehre gedacht. Es ergänzt das einbändige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil IV des Springer-Handbuchs enthält die folgenden Zusatzkapitel zum Springer-Taschenbuch: Höhere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitätstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krümmung und Analysis.
Aktualisiert: 2023-06-25
> findR *
Als mehrbändiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie für wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehre gedacht. Es ergänzt das einbändige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil IV des Springer-Handbuchs enthält die folgenden Zusatzkapitel zum Springer-Taschenbuch: Höhere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitätstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krümmung und Analysis.
Aktualisiert: 2023-06-25
> findR *
Als mehrbändiges Nachschlagewerk ist das Springer-Handbuch der Mathematik in erster Linie für wissenschaftliche Bibliotheken, akademische Institutionen und Firmen sowie interessierte Individualkunden in Forschung und Lehre gedacht. Es ergänzt das einbändige themenumfassende Springer-Taschenbuch der Mathematik (ehemaliger Titel Teubner-Taschenbuch der Mathematik), das sich in seiner begrenzten Stoffauswahl besonders an Studierende richtet. Teil IV des Springer-Handbuchs enthält die folgenden Zusatzkapitel zum Springer-Taschenbuch: Höhere Analysis, Lineare sowie Nichtlineare Funktionalanalysis und ihre Anwendungen, Dynamische Systeme, Nichtlineare partielle Differentialgleichungen, Mannigfaltigkeiten, Riemannsche Geometrie und allgemeine Relativitätstheorie, Liegruppen, Liealgebren und Elementarteilchen, Topologie, Krümmung und Analysis.
Aktualisiert: 2023-06-25
> findR *
Die gegenseitige Beeinflussung von Mathematik und
Physik wird an einem konkreten Beispiel, der
Universität Leipzig im 19. Jahrhundert,
untersucht. Die Studie konzentriert sich auf das
mit den Begriffen mathematische Physik,
theoretische Physik und Mathematisierung der
Physik umschriebene Problemfeld. Vor dem
Hindergrund der Entwicklung der beiden
Fachgebiete und dem Voranschreiten der
mathematischen bzw. der Entstehung der
theoretischen Physik soll dem diesbezüglichen
Geschehen an der Universität Leipzig
nachgegangenwerden. Der Untersuchungszeitraum
wird durch zwei Leipziger universitäre Ereignisse
begrenzt, die Universitätsreform von 1830 und den
Umzug des Physikalischen sowie des Mathematischen
Instituts in neue Räumlichkeiten in den Jahren
1904/05. Schwerpunktmäßig werden die
Veränderungen im Lehrkörper, die
Vorlesungstätigkeit und die Forschungen der
einzelnen Hochschullehrer betrachtet. Die
Erörterungen sind sowohl als eine Detailstudie
zur Herausbildung der mathematischen und
theoretischen Physik in Deutschland zu verstehen
als auch als ein Beitrag zur Geschichte der
Universität Leipzig.
Aktualisiert: 2023-06-15
> findR *
Die gegenseitige Beeinflussung von Mathematik und
Physik wird an einem konkreten Beispiel, der
Universität Leipzig im 19. Jahrhundert,
untersucht. Die Studie konzentriert sich auf das
mit den Begriffen mathematische Physik,
theoretische Physik und Mathematisierung der
Physik umschriebene Problemfeld. Vor dem
Hindergrund der Entwicklung der beiden
Fachgebiete und dem Voranschreiten der
mathematischen bzw. der Entstehung der
theoretischen Physik soll dem diesbezüglichen
Geschehen an der Universität Leipzig
nachgegangenwerden. Der Untersuchungszeitraum
wird durch zwei Leipziger universitäre Ereignisse
begrenzt, die Universitätsreform von 1830 und den
Umzug des Physikalischen sowie des Mathematischen
Instituts in neue Räumlichkeiten in den Jahren
1904/05. Schwerpunktmäßig werden die
Veränderungen im Lehrkörper, die
Vorlesungstätigkeit und die Forschungen der
einzelnen Hochschullehrer betrachtet. Die
Erörterungen sind sowohl als eine Detailstudie
zur Herausbildung der mathematischen und
theoretischen Physik in Deutschland zu verstehen
als auch als ein Beitrag zur Geschichte der
Universität Leipzig.
Aktualisiert: 2023-06-07
> findR *
Ausgehend von der Hamiltonschen Mechanik wird die Quantenmechanik im historischen Ablauf vom Bohrschen Atommodell über die Wellenmechanik von Schrödinger und die axiomatische Darstellung mit Operatoren im Hilbertraum bis zur relativistischen Quantenmechanik nach Dirac behandelt.
Aktualisiert: 2023-06-07
> findR *
Das wichtigste Handwerkszeug der Physik ist die Mathematik. Man kann sogar behaupten, dass die Mathematik die eigentliche Sprache der Physik ist. In dieser Sprache werden die physikalischen Gesetzmäßigkeiten und Theorien formuliert, auch schon zu Beginn des Studiums. Der dazu notwendige mathematische Apparat geht deutlich über den der Schulmathematik hinaus.
Dieses Lehrbuch bietet eine theoretisch-physikalische und mathematische Vertiefung des Stoffes zu den Grundvorlesungen in Physik. Dabei wird, weitgehend parallel zu dem Vorgehen in der Experimentalphysik, das mathematische Handwerkszeug vermittelt.
Die Stoffauswahl orientiert sich an den wesentlichen Inhalten der ersten Grundvorlesungen zur Physik und konzentriert sich in der Hauptsache auf die Mechanik und die Elektrostatik. Dazu werden die Grundlagen der Vektorrechnung, der Vektoranalysis sowie der gewöhnlichen und partiellen Differentialgleichungen und der Wahrscheinlichkeitstheorie entwickelt.
Im gesamten Text sind zahlreiche Beispiele ausführlich behandelt. Die zusätzlichen Aufgaben am Ende jedes Kapitels sollten in eigener Regie gelöst werden. Zur Kontrolle findet man Lösungen am Ende des Buches.
Aktualisiert: 2023-06-06
> findR *
MEHR ANZEIGEN
Bücher zum Thema Mathematische Physik
Sie suchen ein Buch über Mathematische Physik? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Mathematische Physik. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Mathematische Physik im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Mathematische Physik einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Mathematische Physik - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Mathematische Physik, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Mathematische Physik und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.