Die Arbeit beschreibt die Entwicklung eines Pyrolyseprozesses zur Herstellung der Monomere Tetrafluorethen (TFE) und Hexafluorpropen (HFP), welche die entscheidenden Grundbausteine für die am häufigsten genutzten Fluorpolymere Polytetrafluorethylen und Tetrafluorethylen-Hexafluorpropylen-Copolymer sind.
Im Gegensatz zur herkömmlichen Monomerproduktion von Ethen und Propen über die Dampfspaltung erfolgt die Synthese von Fluormonomeren aktuell über eine mehrstufige chlormittlerbasierte Herstellungsroute, die einen hohen Energieverbrauch und große Mengen an Abfallsäuren in jedem Prozessschritt aufweist.
Im Rahmen der Arbeit wird daher eine chlorfreie Herstellungsroute für die wichtigsten Fluoralkene TFE und HFP entwickelt und überprüft. Ausgangspunkt des neuentwickelten Prozesses sind bisher nicht genutzte teilfluorierte Reststoffe der elektrochemischen Fluorierung (ECF), aus welchen das Produktspektrum der ECF zu großen Teilen besteht. Unter Berücksichtigung von Aspekten der Verfahrens-, Prozess- und Reaktorentwicklung wurde ein thermisches Pyrolyseverfahren in einem keramischen Hochtemperatur-Mikroreaktor umgesetzt, das die Verwertung dieser teilfluorierter Alkane zu den Wertprodukten TFE und HFP ermöglicht.
Abschließend wird das neuentwickelte Verfahren über eine Lebenszyklusanalyse (LCA) hinsichtlich seiner energetischen und ökologischen Potenziale bewertet. Dabei wird deutlich, dass sich der entwickelte Pyrolyseprozess auf der ökologischen Seite signifikant besser auf die Umwelt auswirkt. Auf der ökonomischen Seite lassen sich hohe Energieeinsparungen realisieren.
Der entwickelte Pyrolyseprozess stellt einen wichtigen Baustein auf dem Weg zu einer nachhaltigen Synthese der Fluormonomere dar und ermöglicht eine vollständig chlorfreie Fluormonomer-Herstellung.
Aktualisiert: 2021-08-05
> findR *
Der Einsatz von millistrukturierten Reaktoren bei Produktionsprozessen in der Pharma- und Feinchemikalienindustrie birgt hohes Potential für die Prozessintensivierung. Durch den intensivierten Wärmeübergang eröffnen sich insbesondere bei exothermen Syntheseschritten neue Prozessfenster, die eine höhere Produktivität, reduzierten Lösungsmittelabfall und eine höhere Energieeffizienz ermöglichen.
Die Prozessentwicklung energieeffizienter kontinuierlicher Verfahren wird anhand von zwei exothermen Beispielreaktionen durchgeführt und beginnt mit der Reaktionsuntersuchung im Kapillar-Mikroreaktor. Für die Synthese von 3-Piperidino-propionsäureethylester kann daraus ein kinetisches Modell der zugrunde liegenden Michael-Addition abgeleitet werden. Versuche zur Synthese der ionischen Flüssigkeit 1-Butyl-3-Methylimidazolium Bromid [BMIM]Br tragen zu einem verbesserten Modell der lösungsmittelfreien Reaktionsführung mit zwei nicht mischbaren Flüssigphasen bei.
Die Vorgehensweise bei der anschließenden Maßstabsübertragung in millistrukturierte Wärmeübertrager-Reaktoren folgt einem methodischen Ansatz. Abweichungen vom idealen Plug-Flow-Verhalten des Reaktors werden dabei durch experimentelle Charakterisierung der Verweilzeitverteilung und Mischeffizienz bestimmt und durch Wahl der Kanalstrukturen im Reaktor gezielt verringert. Auf Grundlage der Reaktormodelle und charakteristischer Kennzahlen werden Skalierungseffekte im Hinblick auf das Zusammenspiel von Reaktion und Wärmetransport berechnet und diskutiert. Validierungsversuche in einem kommerziell verfügbaren Produktionsreaktor sowie in eigenen reaktionsspezifisch angepassten millistrukturierten Plattenreaktoren bestätigen die Simulationsergebnisse. Die lösungsmittelfreie Hochtemperatur-Synthese von [BMIM]Br kann durch die Auslegung eines Multi-Injektions-Reaktors realisiert werden, dessen schrittweise ansteigende Kanalabmessungen sich unmittelbar an der Berechnung der lokalen Wärmefreisetzung im Reaktor orientieren.
Die Energieeffizienz des Gesamtverfahrens einschließlich Produktaufarbeitung wird am Beispiel der Michael-Addition über eine Prozesssimulation optimiert. Auf Basis der etablierten Methode einer Pinch-Analyse wird ein Prozessentwurf mit Wärmeintegration und Rückführung nicht umgesetzter Ausgangsstoffe entwickelt. Versuche im Labormaßstab demonstrieren die praktische Umsetzung der Wärmeintegration bei der Kleinmengenproduktion mit millistrukturierten Wärmeübertrager-Reaktoren.
Aktualisiert: 2019-12-27
> findR *
Inhalt dieser Arbeit ist die Entwicklung und Charakterisierung von Mikroreaktoren für die Kristallisation biologischer Makromoleküle, einem der Schlüsselprozesse in der aktuellen biotechnischen Forschung. Hauptziele waren die Bereitstellung neuartiger Technologieplattformen als kompakte wiederverwendbare Mikroreaktoren, deren physikalische und verfahrenstechnische Charakterisierung sowie die Überprüfung, inwieweit sich mikrostrukturierte Komponenten für den Einsatz in der Biokristallisation eignen. Die Entwicklung wurde hierbei in zwei Arbeitsabschnitte unterteilt: I) Batch-Mikroreaktor zur temperaturkontrollierten Kristallisation im Batch-Betrieb; II) Fluss-Mikroreaktor zur temperatur- und konvektionskontrollierten Kristallisation im kontinuierlichen Betrieb. Die thermische Charakterisierung der Mikroreaktoren umfasste die Analyse der Temperaturfelder und Erfassung dynamischer Parameter mithilfe von Pt-Dünnschichtsensoren und thermografischen Messungen. Die fluidischen Parameter wurden in Messungen zum Druckverlust, zur Verweilzeit- und Geschwindigkeitsverteilung ermittelt. 3D-FEM- bzw. CFD-Rechnungen dienten im Zuge der Designoptimierung zur Variantenstudie und Analyse experimentell unzugänglicher Bereiche. Experimente und Simulationen wurde anhand analytischer 1D-Modelle validiert. Untersuchungen zum temperaturkontrollierten Kristallwachstum von Modellproteinen zielten auf die Evaluierung des Mikroreaktorkonzepts und dessen Charakterisierung ab. Ein Ergebnis der Arbeit ist der Prototyp eines voll funktionsfähigen Batch-Mikroreaktors auf der Basis von Silizium-Mikrosystemtechnik und Dünnschichttechnologie zur temperaturkontrollierten Kristallisation kleiner Proteinmengen. Weiterhin gelang es durch Integration (mikro-) fluidischer Strukturen, das Mikroreaktorkonzept für den kontinuierlichen Betrieb zum Fluss-Mikroreaktor zu erweitern. Die Mikroreaktorsysteme erfüllen die thermischen und fluidischen Anforderungen der Biokristallisation. Die Temperierung ist im Bereich . = 5°C . 50°C exakt (.T ±3 s) erlauben Studien mit dynamischen Temperaturprotokollen. Im gesamten Flusssystem liegen laminare Bedingungen vor. Verweilzeitverhalten und Druckverlust (.p ¡Ö 100 mbar) des Mikroreaktors werden dominiert durch die fluidische Peripherie. Im Chipreaktor als dem eigentlichen Reaktionsraum herrschen homogene Strömungsverhältnisse ohne Totvolumina und Rückströmungen. Erste Untersuchungen zur Proteinkristallisation im Batch-Mikroreaktor zeigen, dass die Mikroreaktoren unmittelbar einsetzbar sind. Der Einfluss der Temperatur als sensitiver Parameter in der Proteinkristallisation konnte mithilfe verschiedener Temperaturprotokolle nachgewiesen werden. Die Kristallqualität reicht an die am weitesten verbreitete Standardmethode, die Dampfdiffusion .Hängender Tropfen., heran. Durch ihre homogenen und gut zu charakterisierenden fluidischen und thermischen Betriebsparameter eignen sich die Mikroreaktoren hervorragend als Sekundärverfahren im Parameterscreening sowie für physiko-chemische Untersuchungen der Kristallogenese zur Erstellung von Phasendiagrammen. In Perspektive bedeutet die Integration weiterer fluidischer und analytischer Komponenten eine beträchtliche Erweiterung des Parameterraums und eröffnet neue Möglichkeiten zur in situ-Analyse physiko-chemischer Prozesse.
Aktualisiert: 2021-02-11
> findR *
MEHR ANZEIGEN
Bücher zum Thema Mikroreaktor
Sie suchen ein Buch über Mikroreaktor? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Mikroreaktor. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Mikroreaktor im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Mikroreaktor einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Mikroreaktor - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Mikroreaktor, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Mikroreaktor und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.