Topologische Ableitung zur Optimierung crashbelasteter Strukturen

Topologische Ableitung zur Optimierung crashbelasteter Strukturen von Weider,  Katrin
In dieser Dissertation wird die Topologische Ableitung unter Materialnichtlinearität, großer Verformung und Zeitabhängigkeit vorgestellt. Hierbei gibt die Topologische Ableitung an, wie sich ein Funktional durch Einbringen einer Aussparung verändert. Mithilfe der adjungierten Methode und einer Interpolation des elasto-plastischen Materialverhaltens wird ein Berechnungsverfahren zur Bestimmung dieser Sensitivität entwickelt. Die Funktionale werden um die mechanischen nichtlinear transienten Gleichgewichtsbedingungen mit einem Lagrange-Multiplikator (der Adjungierten) erweitert. Dieser wird so gewählt, dass implizite Ableitungsterme, wie beispielsweise die Ableitung der Verschiebung nach der Entwurfsvariable, nicht mehr berechnet werden müssen, sondern nur die expliziten Ableitungsterme, wie beispielsweise die Ableitung des Funktionals nach der Entwurfsvariable. Für die Berechnung der Adjungierten ist ein Endwertproblem zu lösen. Je nachdem, ob zuerst differenziert wird und anschließend die zeitliche Diskretisierung erfolgt oder umgekehrt, entsteht ein eigenes Lösungsschema für die Adjungierte. Die Entwicklung ist zunächst allgemein gehalten, so dass das adjungierte Lösungsschema auch für Funktionale, die Geschwindigkeiten oder Beschleunigungen beinhalten, gültig ist. Für die innere Energie einer Struktur und die Verschiebung eines Einzelpunktes wird die Topologische Ableitung in analytischer Form konkretisiert. Es verbleiben für die Berechnung der Topologischen Ableitung Integralterme, deren Auflösung analytisch nicht mehr möglich ist. Diese Integration wird durch eine Materialinterpolation ersetzt, die das durch plastische Dehnung und isotrope Verfestigung entstandene Materialverhalten temporär linearisiert wiedergibt.
Aktualisiert: 2021-11-22
> findR *
MEHR ANZEIGEN

Bücher zum Thema nichtlinear dynamische Probleme

Sie suchen ein Buch über nichtlinear dynamische Probleme? Bei Buch findr finden Sie eine große Auswahl Bücher zum Thema nichtlinear dynamische Probleme. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher zum Thema nichtlinear dynamische Probleme im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zum Thema nichtlinear dynamische Probleme einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.

nichtlinear dynamische Probleme - Große Auswahl Bücher bei Buch findr

Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum Thema nichtlinear dynamische Probleme, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Unter nichtlinear dynamische Probleme und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.