Moritz Berger beschäftigt sich mit einer Erweiterung des klassischen binären Rasch-Modells, mit der es möglich ist, Unterschiede zwischen Personen aus unterschiedlichen Subgruppen bei der Beantwortung von Testitems zu berücksichtigen. Das binäre Rasch-Modell findet Anwendung in der Psychometrie bei der Auswertung von Intelligenztests. Grundannahme dieses Modells ist, dass die Schwierigkeit eines Testitems für alle Personen mit derselben Fähigkeit exakt gleich ist, was jedoch oftmals nicht der Fall ist. Das vorgestellte, erweiterte Modell wird mithilfe von Boosting-Verfahren geschätzt. Auf Basis von Simulationen und echten Datenbeispielen wird die Güte der Modelle und des Schätzverfahrens gründlich untersucht und Grenzen der Methoden aufgezeigt.
Aktualisiert: 2023-07-02
> findR *
Moritz Berger beschäftigt sich mit einer Erweiterung des klassischen binären Rasch-Modells, mit der es möglich ist, Unterschiede zwischen Personen aus unterschiedlichen Subgruppen bei der Beantwortung von Testitems zu berücksichtigen. Das binäre Rasch-Modell findet Anwendung in der Psychometrie bei der Auswertung von Intelligenztests. Grundannahme dieses Modells ist, dass die Schwierigkeit eines Testitems für alle Personen mit derselben Fähigkeit exakt gleich ist, was jedoch oftmals nicht der Fall ist. Das vorgestellte, erweiterte Modell wird mithilfe von Boosting-Verfahren geschätzt. Auf Basis von Simulationen und echten Datenbeispielen wird die Güte der Modelle und des Schätzverfahrens gründlich untersucht und Grenzen der Methoden aufgezeigt.
Aktualisiert: 2023-07-02
> findR *
Moritz Berger beschäftigt sich mit einer Erweiterung des klassischen binären Rasch-Modells, mit der es möglich ist, Unterschiede zwischen Personen aus unterschiedlichen Subgruppen bei der Beantwortung von Testitems zu berücksichtigen. Das binäre Rasch-Modell findet Anwendung in der Psychometrie bei der Auswertung von Intelligenztests. Grundannahme dieses Modells ist, dass die Schwierigkeit eines Testitems für alle Personen mit derselben Fähigkeit exakt gleich ist, was jedoch oftmals nicht der Fall ist. Das vorgestellte, erweiterte Modell wird mithilfe von Boosting-Verfahren geschätzt. Auf Basis von Simulationen und echten Datenbeispielen wird die Güte der Modelle und des Schätzverfahrens gründlich untersucht und Grenzen der Methoden aufgezeigt.
Aktualisiert: 2023-07-02
> findR *
Moritz Berger beschäftigt sich mit einer Erweiterung des klassischen binären Rasch-Modells, mit der es möglich ist, Unterschiede zwischen Personen aus unterschiedlichen Subgruppen bei der Beantwortung von Testitems zu berücksichtigen. Das binäre Rasch-Modell findet Anwendung in der Psychometrie bei der Auswertung von Intelligenztests. Grundannahme dieses Modells ist, dass die Schwierigkeit eines Testitems für alle Personen mit derselben Fähigkeit exakt gleich ist, was jedoch oftmals nicht der Fall ist. Das vorgestellte, erweiterte Modell wird mithilfe von Boosting-Verfahren geschätzt. Auf Basis von Simulationen und echten Datenbeispielen wird die Güte der Modelle und des Schätzverfahrens gründlich untersucht und Grenzen der Methoden aufgezeigt.
Aktualisiert: 2023-03-14
> findR *
Moritz Berger beschäftigt sich mit einer Erweiterung des klassischen binären Rasch-Modells, mit der es möglich ist, Unterschiede zwischen Personen aus unterschiedlichen Subgruppen bei der Beantwortung von Testitems zu berücksichtigen. Das binäre Rasch-Modell findet Anwendung in der Psychometrie bei der Auswertung von Intelligenztests. Grundannahme dieses Modells ist, dass die Schwierigkeit eines Testitems für alle Personen mit derselben Fähigkeit exakt gleich ist, was jedoch oftmals nicht der Fall ist. Das vorgestellte, erweiterte Modell wird mithilfe von Boosting-Verfahren geschätzt. Auf Basis von Simulationen und echten Datenbeispielen wird die Güte der Modelle und des Schätzverfahrens gründlich untersucht und Grenzen der Methoden aufgezeigt.
Aktualisiert: 2023-04-04
> findR *
MEHR ANZEIGEN
Bücher zum Thema Penalisierte Maximum-Likelihood-Schätzung
Sie suchen ein Buch über Penalisierte Maximum-Likelihood-Schätzung? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Penalisierte Maximum-Likelihood-Schätzung. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Penalisierte Maximum-Likelihood-Schätzung im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Penalisierte Maximum-Likelihood-Schätzung einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Penalisierte Maximum-Likelihood-Schätzung - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Penalisierte Maximum-Likelihood-Schätzung, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Penalisierte Maximum-Likelihood-Schätzung und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.