Die Dissertation untersucht die Vorhersage ungeplanter Ausfälle von PBF-LB/M-Systemen (Laser-basierte Pulverbettfusion von Metallen) mittels KI und maschinellem Lernen. Ziel ist Kostenreduktion und Verbesserung der Maschinenzuverlässigkeit in der metallbasierten additiven Fertigung. Die Studie analysiert tausende Baujobs aus realen industriellen Produktionsumgebungen verschiedener Industriesektoren.
In der Arbeit wurde CRISP-DM, eine Methode zur Kombination von Data Mining und betriebswirtschaftlichen Zielen, eingesetzt. Der Fokus lag auf der Reduzierung der Kosten durch präventive Baujobabbrüche und Fehler-Ursachen-Analyse mittels Interpretation von Black-Box-Modellen. Die Daten wurden in aggregierte Form konvertiert und zur Lösung des binären Klassifizierungsproblems mittels verschiedener Lernverfahren verarbeitet. Gradient Boosted Trees wurde als bestes Lernverfahren identifiziert und weiter optimiert. Die Ergebnisse zeigten exzellente Prognosegüten innerhalb der ersten 3-6 Stunden der Produktionsphase.
Die Studie zeigt durchschnittliche Kosteneinsparungen von 10-40% bei präventiven Eingriffen und überproportionale Einsparungen für langandauernde, hochvolumige Bauteile bei zunehmenden Ausfallraten. SHAP wurde zur Interpretation von Black-Box-Modellen und Identifizierung von Maßnahmen zur Steigerung der Maschinenzuverlässigkeit eingesetzt.
Zukünftige Projekte könnten ein Frühwarnsystem für PBF-Systembetreiber entwickeln, um Kostenvorteile und bessere Maschinenkontrolle zu realisieren. Die Arbeit zeigt Potenzial ungenutzter Sensordaten aus additiven Baujobs für die Wertschöpfungskette. Der Fokus sollte auf kooperativem Datenaustausch zwischen Marktteilnehmern liegen, um neue Geschäftsmodelle zu finden und additive Fertigung zur industriellen Serienreife zu führen.
Aktualisiert: 2023-05-31
> findR *
Die Dissertation untersucht die Vorhersage ungeplanter Ausfälle von PBF-LB/M-Systemen (Laser-basierte Pulverbettfusion von Metallen) mittels KI und maschinellem Lernen. Ziel ist Kostenreduktion und Verbesserung der Maschinenzuverlässigkeit in der metallbasierten additiven Fertigung. Die Studie analysiert tausende Baujobs aus realen industriellen Produktionsumgebungen verschiedener Industriesektoren.
In der Arbeit wurde CRISP-DM, eine Methode zur Kombination von Data Mining und betriebswirtschaftlichen Zielen, eingesetzt. Der Fokus lag auf der Reduzierung der Kosten durch präventive Baujobabbrüche und Fehler-Ursachen-Analyse mittels Interpretation von Black-Box-Modellen. Die Daten wurden in aggregierte Form konvertiert und zur Lösung des binären Klassifizierungsproblems mittels verschiedener Lernverfahren verarbeitet. Gradient Boosted Trees wurde als bestes Lernverfahren identifiziert und weiter optimiert. Die Ergebnisse zeigten exzellente Prognosegüten innerhalb der ersten 3-6 Stunden der Produktionsphase.
Die Studie zeigt durchschnittliche Kosteneinsparungen von 10-40% bei präventiven Eingriffen und überproportionale Einsparungen für langandauernde, hochvolumige Bauteile bei zunehmenden Ausfallraten. SHAP wurde zur Interpretation von Black-Box-Modellen und Identifizierung von Maßnahmen zur Steigerung der Maschinenzuverlässigkeit eingesetzt.
Zukünftige Projekte könnten ein Frühwarnsystem für PBF-Systembetreiber entwickeln, um Kostenvorteile und bessere Maschinenkontrolle zu realisieren. Die Arbeit zeigt Potenzial ungenutzter Sensordaten aus additiven Baujobs für die Wertschöpfungskette. Der Fokus sollte auf kooperativem Datenaustausch zwischen Marktteilnehmern liegen, um neue Geschäftsmodelle zu finden und additive Fertigung zur industriellen Serienreife zu führen.
Aktualisiert: 2023-05-18
> findR *
Die Dissertation untersucht die Vorhersage ungeplanter Ausfälle von PBF-LB/M-Systemen (Laser-basierte Pulverbettfusion von Metallen) mittels KI und maschinellem Lernen. Ziel ist Kostenreduktion und Verbesserung der Maschinenzuverlässigkeit in der metallbasierten additiven Fertigung. Die Studie analysiert tausende Baujobs aus realen industriellen Produktionsumgebungen verschiedener Industriesektoren.
In der Arbeit wurde CRISP-DM, eine Methode zur Kombination von Data Mining und betriebswirtschaftlichen Zielen, eingesetzt. Der Fokus lag auf der Reduzierung der Kosten durch präventive Baujobabbrüche und Fehler-Ursachen-Analyse mittels Interpretation von Black-Box-Modellen. Die Daten wurden in aggregierte Form konvertiert und zur Lösung des binären Klassifizierungsproblems mittels verschiedener Lernverfahren verarbeitet. Gradient Boosted Trees wurde als bestes Lernverfahren identifiziert und weiter optimiert. Die Ergebnisse zeigten exzellente Prognosegüten innerhalb der ersten 3-6 Stunden der Produktionsphase.
Die Studie zeigt durchschnittliche Kosteneinsparungen von 10-40% bei präventiven Eingriffen und überproportionale Einsparungen für langandauernde, hochvolumige Bauteile bei zunehmenden Ausfallraten. SHAP wurde zur Interpretation von Black-Box-Modellen und Identifizierung von Maßnahmen zur Steigerung der Maschinenzuverlässigkeit eingesetzt.
Zukünftige Projekte könnten ein Frühwarnsystem für PBF-Systembetreiber entwickeln, um Kostenvorteile und bessere Maschinenkontrolle zu realisieren. Die Arbeit zeigt Potenzial ungenutzter Sensordaten aus additiven Baujobs für die Wertschöpfungskette. Der Fokus sollte auf kooperativem Datenaustausch zwischen Marktteilnehmern liegen, um neue Geschäftsmodelle zu finden und additive Fertigung zur industriellen Serienreife zu führen.
Aktualisiert: 2023-05-12
> findR *
Die Dissertation untersucht die Vorhersage ungeplanter Ausfälle von PBF-LB/M-Systemen (Laser-basierte Pulverbettfusion von Metallen) mittels KI und maschinellem Lernen. Ziel ist Kostenreduktion und Verbesserung der Maschinenzuverlässigkeit in der metallbasierten additiven Fertigung. Die Studie analysiert tausende Baujobs aus realen industriellen Produktionsumgebungen verschiedener Industriesektoren.
In der Arbeit wurde CRISP-DM, eine Methode zur Kombination von Data Mining und betriebswirtschaftlichen Zielen, eingesetzt. Der Fokus lag auf der Reduzierung der Kosten durch präventive Baujobabbrüche und Fehler-Ursachen-Analyse mittels Interpretation von Black-Box-Modellen. Die Daten wurden in aggregierte Form konvertiert und zur Lösung des binären Klassifizierungsproblems mittels verschiedener Lernverfahren verarbeitet. Gradient Boosted Trees wurde als bestes Lernverfahren identifiziert und weiter optimiert. Die Ergebnisse zeigten exzellente Prognosegüten innerhalb der ersten 3-6 Stunden der Produktionsphase.
Die Studie zeigt durchschnittliche Kosteneinsparungen von 10-40% bei präventiven Eingriffen und überproportionale Einsparungen für langandauernde, hochvolumige Bauteile bei zunehmenden Ausfallraten. SHAP wurde zur Interpretation von Black-Box-Modellen und Identifizierung von Maßnahmen zur Steigerung der Maschinenzuverlässigkeit eingesetzt.
Zukünftige Projekte könnten ein Frühwarnsystem für PBF-Systembetreiber entwickeln, um Kostenvorteile und bessere Maschinenkontrolle zu realisieren. Die Arbeit zeigt Potenzial ungenutzter Sensordaten aus additiven Baujobs für die Wertschöpfungskette. Der Fokus sollte auf kooperativem Datenaustausch zwischen Marktteilnehmern liegen, um neue Geschäftsmodelle zu finden und additive Fertigung zur industriellen Serienreife zu führen.
Aktualisiert: 2023-05-12
> findR *
Wissen schützt! Früh Grenzen erkennen und Nein sagen können
Ein vertrauter Feind: Sexualisierte Gewalt gegen Kinder stammt zu 97% aus dem unmittelbaren Umfeld des Opfers. Die Täter:innen sind häufig direkte Bezugspersonen, die zunächst mit kleineren Grenzverletzungen austesten, wie weit sie gehen können. Umso wichtiger also, dass Kinder übergriffiges Verhalten früh erkennen und wissen, was in Ordnung geht - und wann sie sich jemandem anvertrauen.
Dieses engagierte Sachbuch vermittelt Kindern zwischen 6 und 12 Jahren ein Gefühl für die Grenzen zum sexuellen Missbrauch. Gleichzeitig bietet es Aufklärung und vertiefendes Wissen für Eltern und pädagogische Fachkräfte. Denn: Nichts schützt besser als ein Umfeld, das den offenen Umgang mit diesem Thema nicht scheut.
- Ein Beitrag zur Prävention: Sexueller Gewalt gegen Kinder wirksam entgegentreten
- Ohne Tabus über Doktorspiele und Co. sprechen: Was ist okay und wo beginnt sexuelle Nötigung?
- Vertrauen schaffen und Selbstbewusstsein stärken: Kinder schützen und sensibilisieren
- Einfühlsame Aufklärung für Kinder ab 6 Jahren, ihre Bezugspersonen und für Pädagog:innen
- Inklusive Liste an Beratungsstellen für Betroffene von Missbrauch und Gewalt
Wie spreche ich mit meinem Kind über sexualisierte Gewalt? Tipps für verunsicherte Eltern
Sexuelle Gewalt ist ein Tabuthema, bei dem das Reden schwerfällt. Wie kann ich mit meinem Kind einfühlsam ins Gespräch kommen, ohne es zu verängstigen? Expertin Agota Lavoyer hat einen hilfreichen Fragenkatalog entwickelt und gibt Tipps für den Einstieg. Vom gemeinsamen Duschen bis hin zum intimen Chat werden Unsicherheiten ausgeräumt und klare Linien gezogen, die den Stand der sexuellen Entwicklung mitberücksichtigen.
Wie helfen wir Kindern, ihre persönlichen Grenzen zu erkennen? Dieses mutige Sachbuch zum Kinderschutz lädt ein, offen über sexualisierte Gewalt zu sprechen, und zeigt, wie man Präventionsarbeit erfolgreich in den Alltag integriert.
Aktualisiert: 2023-04-06
> findR *
Kein Thema wird für die Zukunft jedes Einzelnen von uns und im Medizin- und
Sozialsystem derart wichtig werden wie die Prävention. Vorsorge umfasst alles, was
getan werden kann, um gar nicht erst krank zu werden und krank machenden Faktoren
aus dem Weg zu gehen. Doch was kann man konkret tun? Kann ich mich vor Allergien,
Infektionen, Tumoren und Kreislauf- oder Stoffwechselerkrankungen wirklich schützen?
Dr. Rainer Jund, Prof. Dr. Armin Heufelder und Dr. Markus Birk geben Antworten, damit es
leichter fällt, gesund zu bleiben.
- Wie kann ich vor- statt nachsorgen?
- Wie kann ich mich und meine Angehörigen vor Allergien und Co. schützen?
- Welche Arzttermine sollte man wahrnehmen?
- Wo liegen die gesundheitlichen Risiken in welchem Alter?
- Viele Selbsttests zur Früherkennung
Aktualisiert: 2019-12-06
> findR *
MEHR ANZEIGEN
Bücher zum Thema präventive maßnahmen
Sie suchen ein Buch über präventive maßnahmen? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema präventive maßnahmen. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema präventive maßnahmen im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema präventive maßnahmen einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
präventive maßnahmen - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema präventive maßnahmen, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter präventive maßnahmen und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.