Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Projektmanagement ist mehr als nur planen und organisieren: Personen führen, mit Konflikten und Krisen umgehen, kommunizieren, Meinungsbildung und Projektumfeld steuern, die Identifikation der Mitarbeiter fördern, Wissen und Kreativität managen. Worauf es dabei ankommt, erklären in dem Handbuch erfahrene Psychologen und Experten aus der Projektmanagement-Praxis: Ausgehend von typischen Problemen aus dem Projektalltag werden psychologische Hintergründe erläutert und Lösungen präsentiert. Mit Tipps zum Selbstmanagement, Fallbeispielen und Checklisten.
Aktualisiert: 2023-07-02
> findR *
Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung
Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie
Aktualisiert: 2023-07-01
> findR *
Aktualisiert: 2023-07-01
> findR *
Aktualisiert: 2023-07-01
> findR *
Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung
Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie
Aktualisiert: 2023-07-01
> findR *
Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung
Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie
Aktualisiert: 2023-07-01
> findR *
Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung
Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie
Aktualisiert: 2023-07-01
> findR *
Daten sinnvoll auswerten – mit den geeigneten Verfahren
Die richtigen Fragen stellen und passende Experimente durchführen
Die häufigsten Fehler kennen und Fallstricke umgehen
Statistische Datenanalysen sind ein Grundpfeiler der Wissenschaft. Die Vielfalt der zur Verfügung stehenden Verfahren und Methoden lässt Forschern jedoch einen enormen Spielraum bei der Analyse ihrer Daten. Leider fehlt vielen Wissenschaftlern das fundierte Fachwissen, statistische Verfahren korrekt anzuwenden. Deshalb werden häufig nicht die richtigen Analysen vorgenommen, die zu zahlreichen falschen Ergebnisse führen.
Mit diesem Buch erhalten Wissenschaftler und Studenten einen kompakten Leitfaden für die korrekte Anwendung statistischer Verfahren. Gängige Fehler und Missstände bei der Erstellung von Statistiken werden anhand konkreter Fallbeispiele aufgedeckt und dafür praktische Lösungen angeboten.
Der Autor gibt zahlreiche Hinweise u.a. zu folgenden Themen:
Die richtigen Fragen stellen, geeignete Experimente entwerfen und korrekte statistische Analysemethoden auswählen
p-Werte, Signifikanz, Nicht-Signifikanz, Konfidenzintervalle und Regression
Auswahl einer geeigneten Stichprobengröße und Vermeidung falscher Positiver
Am Ende der Kapitel finden Sie Tipps, die Aufschluss darüber geben, welche statistischen Verfahren Sie anwenden können, um die häufigsten Fallstricke zu umgehen. So werden Sie auf die verbreitetsten Probleme hingewiesen und in die Lage versetzt, das für eine gegebene Aufgabe am besten geeignete statistische Verfahren auszuwählen.
Dieses Buch ist ein kompakter und praktischer Ratgeber, der Ihnen dabei hilft, Forschung zu betreiben, deren Statistik Hand und Fuß hat.
Aus dem Inhalt:
Interpretation von Signifikanzwerten (p-Wert und t-Test)
Hypothesentests
Konfidenzintervalle
Falsche Positive und falsche Negative
Neyman-Pearson-System
Statistische Teststärke und Sicherheitsgrad
Prävalenzfehler vermeiden
Bonferroni-Korrektur
Benjamini-Hochberg-Verfahren
Standardabweichung und Standardfehler
Regression
Medianwertaufteilung
ANOVA-Verfahren
Einflussvariablen, Zielvariablen, Störvariablen
Leave-one-out-Kreuzvalidierung
Simpsons Paradoxon
Statistische Irrtümer
Aktualisiert: 2023-07-01
> findR *
Daten sinnvoll auswerten – mit den geeigneten Verfahren
Die richtigen Fragen stellen und passende Experimente durchführen
Die häufigsten Fehler kennen und Fallstricke umgehen
Statistische Datenanalysen sind ein Grundpfeiler der Wissenschaft. Die Vielfalt der zur Verfügung stehenden Verfahren und Methoden lässt Forschern jedoch einen enormen Spielraum bei der Analyse ihrer Daten. Leider fehlt vielen Wissenschaftlern das fundierte Fachwissen, statistische Verfahren korrekt anzuwenden. Deshalb werden häufig nicht die richtigen Analysen vorgenommen, die zu zahlreichen falschen Ergebnisse führen.
Mit diesem Buch erhalten Wissenschaftler und Studenten einen kompakten Leitfaden für die korrekte Anwendung statistischer Verfahren. Gängige Fehler und Missstände bei der Erstellung von Statistiken werden anhand konkreter Fallbeispiele aufgedeckt und dafür praktische Lösungen angeboten.
Der Autor gibt zahlreiche Hinweise u.a. zu folgenden Themen:
Die richtigen Fragen stellen, geeignete Experimente entwerfen und korrekte statistische Analysemethoden auswählen
p-Werte, Signifikanz, Nicht-Signifikanz, Konfidenzintervalle und Regression
Auswahl einer geeigneten Stichprobengröße und Vermeidung falscher Positiver
Am Ende der Kapitel finden Sie Tipps, die Aufschluss darüber geben, welche statistischen Verfahren Sie anwenden können, um die häufigsten Fallstricke zu umgehen. So werden Sie auf die verbreitetsten Probleme hingewiesen und in die Lage versetzt, das für eine gegebene Aufgabe am besten geeignete statistische Verfahren auszuwählen.
Dieses Buch ist ein kompakter und praktischer Ratgeber, der Ihnen dabei hilft, Forschung zu betreiben, deren Statistik Hand und Fuß hat.
Aus dem Inhalt:
Interpretation von Signifikanzwerten (p-Wert und t-Test)
Hypothesentests
Konfidenzintervalle
Falsche Positive und falsche Negative
Neyman-Pearson-System
Statistische Teststärke und Sicherheitsgrad
Prävalenzfehler vermeiden
Bonferroni-Korrektur
Benjamini-Hochberg-Verfahren
Standardabweichung und Standardfehler
Regression
Medianwertaufteilung
ANOVA-Verfahren
Einflussvariablen, Zielvariablen, Störvariablen
Leave-one-out-Kreuzvalidierung
Simpsons Paradoxon
Statistische Irrtümer
Aktualisiert: 2023-07-01
> findR *
Daten sinnvoll auswerten – mit den geeigneten Verfahren
Die richtigen Fragen stellen und passende Experimente durchführen
Die häufigsten Fehler kennen und Fallstricke umgehen
Statistische Datenanalysen sind ein Grundpfeiler der Wissenschaft. Die Vielfalt der zur Verfügung stehenden Verfahren und Methoden lässt Forschern jedoch einen enormen Spielraum bei der Analyse ihrer Daten. Leider fehlt vielen Wissenschaftlern das fundierte Fachwissen, statistische Verfahren korrekt anzuwenden. Deshalb werden häufig nicht die richtigen Analysen vorgenommen, die zu zahlreichen falschen Ergebnisse führen.
Mit diesem Buch erhalten Wissenschaftler und Studenten einen kompakten Leitfaden für die korrekte Anwendung statistischer Verfahren. Gängige Fehler und Missstände bei der Erstellung von Statistiken werden anhand konkreter Fallbeispiele aufgedeckt und dafür praktische Lösungen angeboten.
Der Autor gibt zahlreiche Hinweise u.a. zu folgenden Themen:
Die richtigen Fragen stellen, geeignete Experimente entwerfen und korrekte statistische Analysemethoden auswählen
p-Werte, Signifikanz, Nicht-Signifikanz, Konfidenzintervalle und Regression
Auswahl einer geeigneten Stichprobengröße und Vermeidung falscher Positiver
Am Ende der Kapitel finden Sie Tipps, die Aufschluss darüber geben, welche statistischen Verfahren Sie anwenden können, um die häufigsten Fallstricke zu umgehen. So werden Sie auf die verbreitetsten Probleme hingewiesen und in die Lage versetzt, das für eine gegebene Aufgabe am besten geeignete statistische Verfahren auszuwählen.
Dieses Buch ist ein kompakter und praktischer Ratgeber, der Ihnen dabei hilft, Forschung zu betreiben, deren Statistik Hand und Fuß hat.
Aus dem Inhalt:
Interpretation von Signifikanzwerten (p-Wert und t-Test)
Hypothesentests
Konfidenzintervalle
Falsche Positive und falsche Negative
Neyman-Pearson-System
Statistische Teststärke und Sicherheitsgrad
Prävalenzfehler vermeiden
Bonferroni-Korrektur
Benjamini-Hochberg-Verfahren
Standardabweichung und Standardfehler
Regression
Medianwertaufteilung
ANOVA-Verfahren
Einflussvariablen, Zielvariablen, Störvariablen
Leave-one-out-Kreuzvalidierung
Simpsons Paradoxon
Statistische Irrtümer
Aktualisiert: 2023-07-01
> findR *
Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung
Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie
Aktualisiert: 2023-07-01
> findR *
Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung
Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie
Aktualisiert: 2023-07-01
> findR *
Die grundlegenden Konzepte der Data Science verstehen, Wissen aus Daten ziehen und für Vorhersagen und Entscheidungen nutzen
Die wichtigsten Data-Mining-Verfahren gezielt und gewinnbringend einsetzen
Zahlreiche Praxisbeispiele zur Veranschaulichung
Die anerkannten Data-Science-Experten Foster Provost und Tom Fawcett stellen in diesem Buch die grundlegenden Konzepte der Data Science vor, die für den effektiven Einsatz im Unternehmen von Bedeutung sind.
Sie erläutern das datenanalytische Denken, das erforderlich ist, damit Sie aus Ihren gesammelten Daten nützliches Wissen und geschäftlichen Nutzen ziehen können. Sie erfahren detailliert, welche Methoden der Data Science zu hilfreichen Erkenntnissen führen, so dass auf dieser Grundlage wichtige Entscheidungsfindungen unterstützt werden können.
Dieser Leitfaden hilft Ihnen dabei, die vielen zurzeit gebräuchlichen Data-Mining-Verfahren zu verstehen und gezielt und gewinnbringend anzuwenden. Sie lernen u.a., wie Sie:
Data Science in Ihrem Unternehmen nutzen und damit Wettbewerbsvorteile erzielen
Daten als ein strategisches Gut behandeln, in das investiert werden muss, um echten Nutzen daraus zu ziehen
Geschäftliche Aufgaben datenanalytisch angehen und den Data-Mining-Prozess nutzen, um auf effiziente Weise sinnvolle Daten zu sammeln
Das Buch beruht auf einem Kurs für Betriebswirtschaftler, den Provost seit rund zehn Jahren an der New York University unterrichtet, und nutzt viele Beispiele aus der Praxis, um die Konzepte zu veranschaulichen.
Das Buch richtet sich an Führungskräfte und Projektmanager, die Data-Science-orientierte Projekte managen, an Entwickler, die Data-Science-Lösungen implementieren sowie an alle angehenden Data Scientists und Studenten.
Aus dem Inhalt:
Datenanalytisches Denken lernen
Der Data-Mining-Prozess
Überwachtes und unüberwachtes Data Mining
Einführung in die Vorhersagemodellbildung: von der Korrelation zur überwachten Segmentierung
Anhand der Daten optimale Modellparameter finden mit Verfahren wie lineare und logistische Regression sowie Support Vector Machines
Prinzip und Berechnung der Ähnlichkeit
Nächste-Nachbarn-Methoden und Clustering
Entscheidungsanalyse I: Was ist ein gutes Modell
Visualisierung der Leistung von Modellen
Evidenz und Wahrscheinlichkeiten
Texte repräsentieren und auswerten
Entscheidungsanalyse II: Analytisches Engineering
Data Science und Geschäftsstrategie
Aktualisiert: 2023-07-01
> findR *
Daten sinnvoll auswerten – mit den geeigneten Verfahren
Die richtigen Fragen stellen und passende Experimente durchführen
Die häufigsten Fehler kennen und Fallstricke umgehen
Statistische Datenanalysen sind ein Grundpfeiler der Wissenschaft. Die Vielfalt der zur Verfügung stehenden Verfahren und Methoden lässt Forschern jedoch einen enormen Spielraum bei der Analyse ihrer Daten. Leider fehlt vielen Wissenschaftlern das fundierte Fachwissen, statistische Verfahren korrekt anzuwenden. Deshalb werden häufig nicht die richtigen Analysen vorgenommen, die zu zahlreichen falschen Ergebnisse führen.
Mit diesem Buch erhalten Wissenschaftler und Studenten einen kompakten Leitfaden für die korrekte Anwendung statistischer Verfahren. Gängige Fehler und Missstände bei der Erstellung von Statistiken werden anhand konkreter Fallbeispiele aufgedeckt und dafür praktische Lösungen angeboten.
Der Autor gibt zahlreiche Hinweise u.a. zu folgenden Themen:
Die richtigen Fragen stellen, geeignete Experimente entwerfen und korrekte statistische Analysemethoden auswählen
p-Werte, Signifikanz, Nicht-Signifikanz, Konfidenzintervalle und Regression
Auswahl einer geeigneten Stichprobengröße und Vermeidung falscher Positiver
Am Ende der Kapitel finden Sie Tipps, die Aufschluss darüber geben, welche statistischen Verfahren Sie anwenden können, um die häufigsten Fallstricke zu umgehen. So werden Sie auf die verbreitetsten Probleme hingewiesen und in die Lage versetzt, das für eine gegebene Aufgabe am besten geeignete statistische Verfahren auszuwählen.
Dieses Buch ist ein kompakter und praktischer Ratgeber, der Ihnen dabei hilft, Forschung zu betreiben, deren Statistik Hand und Fuß hat.
Aus dem Inhalt:
Interpretation von Signifikanzwerten (p-Wert und t-Test)
Hypothesentests
Konfidenzintervalle
Falsche Positive und falsche Negative
Neyman-Pearson-System
Statistische Teststärke und Sicherheitsgrad
Prävalenzfehler vermeiden
Bonferroni-Korrektur
Benjamini-Hochberg-Verfahren
Standardabweichung und Standardfehler
Regression
Medianwertaufteilung
ANOVA-Verfahren
Einflussvariablen, Zielvariablen, Störvariablen
Leave-one-out-Kreuzvalidierung
Simpsons Paradoxon
Statistische Irrtümer
Aktualisiert: 2023-07-01
> findR *
Der schnelle Einstieg in professionelles Projektmanagement!
Mit diesem Band aus der bewährten Reihe „Kompakt-Training Praktische Betriebswirtschaft“ schaffen Sie sich schnell und leicht verständlich eine solide Basis für erfolgreiche Projektarbeit. Von der Vorbereitung über die Durchführung bis hin zum Abschluss von Projekten erfahren Sie, wie Sie Projekte erfolgreich leiten und managen.
Zahlreiche praktische Beispiele, Schaubilder und Übungsaufgaben mit Lösungen helfen Ihnen, das Erlernte zu vertiefen und Ihren Wissensstand eigenständig zu kontrollieren. Das MiniLex(ikon) erlaubt Ihnen das schnelle Nachschlagen aller wichtigen Begriffe. Neu in der 11. Auflage ist ein Kapitel, das klassisches und agiles Projektmanagement gegenübergestellt und zudem einen grundlegenden Überblick über das agile Projektmanagement gibt. Dabei wird auch auf Scrum eingegangen, einem Konzept, das der Lösung komplexer Problemstellungen in der Projektarbeit dient.
Ob im Studium, zur Vorbereitung auf Klausuren und Prüfungen oder in der täglichen Praxis – mit diesem Kompakt-Training sind Sie immer bestens vorbereitet.
Aus dem Inhalt:
Grundlagen (Arten und Ziele von Projekten, Projektprozess, Projektmittel).
Projektvorbereitung.
Projektdesign.
Projektplanung.
Projektauslösung.
Projektleitung.
Projektarbeit.
Projektabschluss.
Übungsteil.
MiniLex(ikon).
Aktualisiert: 2023-06-28
> findR *
Aktualisiert: 2023-06-21
> findR *
Aktualisiert: 2023-06-21
> findR *
MEHR ANZEIGEN
Bücher zum Thema Projektmanager
Sie suchen ein Buch über Projektmanager? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Projektmanager. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Projektmanager im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Projektmanager einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Projektmanager - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Projektmanager, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Projektmanager und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.