Die derzeitige Wirtschaftslage in Europa ist fragil. Spätestens seit dem Kriegsausbruch in der Ukraine und der damit verbundenen Energiekrise in Europa trüben sich die Wachstumserwartungen. Durch die wirtschaftliche Verflechtung zwischen Staaten und Banken ist es in diesen unbeständigen Zeiten wichtig, über Instrumente zu verfügen, um schnell auf veröffentliche Geschäftszahlen von Kreditinstituten reagieren zu können und eigenständig die Bonität von Banken einzuschätzen, da die Anpassung eines externen Ratings oftmals mit einer zeitlichen Verzögerung einhergeht. Daher wird auf Basis von drei Datensätzen mittels maschinellen Lernens versucht, die Determinanten von Emittentenratings von europäischen Banken zu erklären. Unter der Verwendung von Entscheidungsbäumen und logistischen Regressionsmodellen sollen die wesentlichen Einflüsse der binären Klassifikation in die Segmente Investmentgrade und Non-Investmentgrade sowie die ordinale Ratingklasse analysiert werden.
Aktualisiert: 2023-07-03
> findR *
Die derzeitige Wirtschaftslage in Europa ist fragil. Spätestens seit dem Kriegsausbruch in der Ukraine und der damit verbundenen Energiekrise in Europa trüben sich die Wachstumserwartungen. Durch die wirtschaftliche Verflechtung zwischen Staaten und Banken ist es in diesen unbeständigen Zeiten wichtig, über Instrumente zu verfügen, um schnell auf veröffentliche Geschäftszahlen von Kreditinstituten reagieren zu können und eigenständig die Bonität von Banken einzuschätzen, da die Anpassung eines externen Ratings oftmals mit einer zeitlichen Verzögerung einhergeht. Daher wird auf Basis von drei Datensätzen mittels maschinellen Lernens versucht, die Determinanten von Emittentenratings von europäischen Banken zu erklären. Unter der Verwendung von Entscheidungsbäumen und logistischen Regressionsmodellen sollen die wesentlichen Einflüsse der binären Klassifikation in die Segmente Investmentgrade und Non-Investmentgrade sowie die ordinale Ratingklasse analysiert werden.
Aktualisiert: 2023-07-03
> findR *
Nach Abschluss der Datenerhebung im Rahmen einer Doktorarbeit oder einer eigens durchgeführten klinischen Studie stellen sich viele Mediziner oftmals die Frage: Was nun tun mit der Fülle an Daten? Laura Benner, Marietta Kirchner, Johannes Krisam, Kevin Kunzmann und Anja Sander stellen anhand eines Datenbeispiels aus der Onkologie dar, wie man seine Studiendaten unter Kontrolle bringt und planvoll an die statistische Auswertung herangeht. Mithilfe der Statistiksoftware SPSS veranschaulichen sie die einzelnen Schritte einer Datenauswertung und gehen neben der Darstellung von Programmfunktionen in SPSS auch auf die statistische Methodik der Auswertungsschritte und die richtige Interpretation und Einordnung der Ergebnisse ein.
Aktualisiert: 2023-07-02
> findR *
Nach Abschluss der Datenerhebung im Rahmen einer Doktorarbeit oder einer eigens durchgeführten klinischen Studie stellen sich viele Mediziner oftmals die Frage: Was nun tun mit der Fülle an Daten? Laura Benner, Marietta Kirchner, Johannes Krisam, Kevin Kunzmann und Anja Sander stellen anhand eines Datenbeispiels aus der Onkologie dar, wie man seine Studiendaten unter Kontrolle bringt und planvoll an die statistische Auswertung herangeht. Mithilfe der Statistiksoftware SPSS veranschaulichen sie die einzelnen Schritte einer Datenauswertung und gehen neben der Darstellung von Programmfunktionen in SPSS auch auf die statistische Methodik der Auswertungsschritte und die richtige Interpretation und Einordnung der Ergebnisse ein.
Aktualisiert: 2023-07-02
> findR *
Nach Abschluss der Datenerhebung im Rahmen einer Doktorarbeit oder einer eigens durchgeführten klinischen Studie stellen sich viele Mediziner oftmals die Frage: Was nun tun mit der Fülle an Daten? Laura Benner, Marietta Kirchner, Johannes Krisam, Kevin Kunzmann und Anja Sander stellen anhand eines Datenbeispiels aus der Onkologie dar, wie man seine Studiendaten unter Kontrolle bringt und planvoll an die statistische Auswertung herangeht. Mithilfe der Statistiksoftware SPSS veranschaulichen sie die einzelnen Schritte einer Datenauswertung und gehen neben der Darstellung von Programmfunktionen in SPSS auch auf die statistische Methodik der Auswertungsschritte und die richtige Interpretation und Einordnung der Ergebnisse ein.
Aktualisiert: 2023-07-02
> findR *
Dieses befasst sich mit der einfachen linearen Regression, der simpelsten Form von Regressionsmodellen, in der für die Modellbildung nur eine einzige Einflussvariable berücksichtigt wird. Leser finden in diesem Buch die Methode der kleinsten Quadrate zur Schätzung der Modellparameter, Residualanalysen zur Überprüfung der Modellannahmen sowie weitere statistische Verfahren zur Beurteilung des Modells. Zudem erfahren sie, wie das Modell als ein Prognoseinstrument eingesetzt werden kann. Somit erwerben Leser eine solide Grundlage zum Verständnis komplexer Regressionsansätze, bei denen mehrere Variablen die Zielgröße beeinflussen und nichtlineare Zusammenhänge vorliegen.
Aktualisiert: 2023-07-02
> findR *
Dieses befasst sich mit der einfachen linearen Regression, der simpelsten Form von Regressionsmodellen, in der für die Modellbildung nur eine einzige Einflussvariable berücksichtigt wird. Leser finden in diesem Buch die Methode der kleinsten Quadrate zur Schätzung der Modellparameter, Residualanalysen zur Überprüfung der Modellannahmen sowie weitere statistische Verfahren zur Beurteilung des Modells. Zudem erfahren sie, wie das Modell als ein Prognoseinstrument eingesetzt werden kann. Somit erwerben Leser eine solide Grundlage zum Verständnis komplexer Regressionsansätze, bei denen mehrere Variablen die Zielgröße beeinflussen und nichtlineare Zusammenhänge vorliegen.
Aktualisiert: 2023-07-02
> findR *
Dieses befasst sich mit der einfachen linearen Regression, der simpelsten Form von Regressionsmodellen, in der für die Modellbildung nur eine einzige Einflussvariable berücksichtigt wird. Leser finden in diesem Buch die Methode der kleinsten Quadrate zur Schätzung der Modellparameter, Residualanalysen zur Überprüfung der Modellannahmen sowie weitere statistische Verfahren zur Beurteilung des Modells. Zudem erfahren sie, wie das Modell als ein Prognoseinstrument eingesetzt werden kann. Somit erwerben Leser eine solide Grundlage zum Verständnis komplexer Regressionsansätze, bei denen mehrere Variablen die Zielgröße beeinflussen und nichtlineare Zusammenhänge vorliegen.
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Die Induktive Statistik bietet in der Praxis zahlreiche Anwendungsmöglichkeiten, u. a. Schätzfunktionen, Hypothesentests und Stichproben aus realen Gesamtheiten.
Auf kompakte Art und Weise stellt das Buch die Grundkenntnisse der Induktiven Statistik vor: Es vermittelt die relevanten Begriffe, Methoden und Probleme. Zudem zeigt es auf, in welchem Kontext die Induktive Statistik in den Wirtschafts- und Sozialwissenschaften Anwendung findet.
Ein Formelteil, Aufgaben mit Lösungen sowie Musterklausuren helfen dabei, das Gelernte schnell zu vertiefen.
Aktualisiert: 2023-07-02
> findR *
Die Induktive Statistik bietet in der Praxis zahlreiche Anwendungsmöglichkeiten, u. a. Schätzfunktionen, Hypothesentests und Stichproben aus realen Gesamtheiten.
Auf kompakte Art und Weise stellt das Buch die Grundkenntnisse der Induktiven Statistik vor: Es vermittelt die relevanten Begriffe, Methoden und Probleme. Zudem zeigt es auf, in welchem Kontext die Induktive Statistik in den Wirtschafts- und Sozialwissenschaften Anwendung findet.
Ein Formelteil, Aufgaben mit Lösungen sowie Musterklausuren helfen dabei, das Gelernte schnell zu vertiefen.
Aktualisiert: 2023-07-02
> findR *
Die Induktive Statistik bietet in der Praxis zahlreiche Anwendungsmöglichkeiten, u. a. Schätzfunktionen, Hypothesentests und Stichproben aus realen Gesamtheiten.
Auf kompakte Art und Weise stellt das Buch die Grundkenntnisse der Induktiven Statistik vor: Es vermittelt die relevanten Begriffe, Methoden und Probleme. Zudem zeigt es auf, in welchem Kontext die Induktive Statistik in den Wirtschafts- und Sozialwissenschaften Anwendung findet.
Ein Formelteil, Aufgaben mit Lösungen sowie Musterklausuren helfen dabei, das Gelernte schnell zu vertiefen.
Aktualisiert: 2023-07-02
> findR *
Die derzeitige Wirtschaftslage in Europa ist fragil. Spätestens seit dem Kriegsausbruch in der Ukraine und der damit verbundenen Energiekrise in Europa trüben sich die Wachstumserwartungen. Durch die wirtschaftliche Verflechtung zwischen Staaten und Banken ist es in diesen unbeständigen Zeiten wichtig, über Instrumente zu verfügen, um schnell auf veröffentliche Geschäftszahlen von Kreditinstituten reagieren zu können und eigenständig die Bonität von Banken einzuschätzen, da die Anpassung eines externen Ratings oftmals mit einer zeitlichen Verzögerung einhergeht. Daher wird auf Basis von drei Datensätzen mittels maschinellen Lernens versucht, die Determinanten von Emittentenratings von europäischen Banken zu erklären. Unter der Verwendung von Entscheidungsbäumen und logistischen Regressionsmodellen sollen die wesentlichen Einflüsse der binären Klassifikation in die Segmente Investmentgrade und Non-Investmentgrade sowie die ordinale Ratingklasse analysiert werden.
Aktualisiert: 2023-07-01
> findR *
Die derzeitige Wirtschaftslage in Europa ist fragil. Spätestens seit dem Kriegsausbruch in der Ukraine und der damit verbundenen Energiekrise in Europa trüben sich die Wachstumserwartungen. Durch die wirtschaftliche Verflechtung zwischen Staaten und Banken ist es in diesen unbeständigen Zeiten wichtig, über Instrumente zu verfügen, um schnell auf veröffentliche Geschäftszahlen von Kreditinstituten reagieren zu können und eigenständig die Bonität von Banken einzuschätzen, da die Anpassung eines externen Ratings oftmals mit einer zeitlichen Verzögerung einhergeht. Daher wird auf Basis von drei Datensätzen mittels maschinellen Lernens versucht, die Determinanten von Emittentenratings von europäischen Banken zu erklären. Unter der Verwendung von Entscheidungsbäumen und logistischen Regressionsmodellen sollen die wesentlichen Einflüsse der binären Klassifikation in die Segmente Investmentgrade und Non-Investmentgrade sowie die ordinale Ratingklasse analysiert werden.
Aktualisiert: 2023-06-30
> findR *
Die derzeitige Wirtschaftslage in Europa ist fragil. Spätestens seit dem Kriegsausbruch in der Ukraine und der damit verbundenen Energiekrise in Europa trüben sich die Wachstumserwartungen. Durch die wirtschaftliche Verflechtung zwischen Staaten und Banken ist es in diesen unbeständigen Zeiten wichtig, über Instrumente zu verfügen, um schnell auf veröffentliche Geschäftszahlen von Kreditinstituten reagieren zu können und eigenständig die Bonität von Banken einzuschätzen, da die Anpassung eines externen Ratings oftmals mit einer zeitlichen Verzögerung einhergeht. Daher wird auf Basis von drei Datensätzen mittels maschinellen Lernens versucht, die Determinanten von Emittentenratings von europäischen Banken zu erklären. Unter der Verwendung von Entscheidungsbäumen und logistischen Regressionsmodellen sollen die wesentlichen Einflüsse der binären Klassifikation in die Segmente Investmentgrade und Non-Investmentgrade sowie die ordinale Ratingklasse analysiert werden.
Aktualisiert: 2023-06-30
> findR *
Die derzeitige Wirtschaftslage in Europa ist fragil. Spätestens seit dem Kriegsausbruch in der Ukraine und der damit verbundenen Energiekrise in Europa trüben sich die Wachstumserwartungen. Durch die wirtschaftliche Verflechtung zwischen Staaten und Banken ist es in diesen unbeständigen Zeiten wichtig, über Instrumente zu verfügen, um schnell auf veröffentliche Geschäftszahlen von Kreditinstituten reagieren zu können und eigenständig die Bonität von Banken einzuschätzen, da die Anpassung eines externen Ratings oftmals mit einer zeitlichen Verzögerung einhergeht. Daher wird auf Basis von drei Datensätzen mittels maschinellen Lernens versucht, die Determinanten von Emittentenratings von europäischen Banken zu erklären. Unter der Verwendung von Entscheidungsbäumen und logistischen Regressionsmodellen sollen die wesentlichen Einflüsse der binären Klassifikation in die Segmente Investmentgrade und Non-Investmentgrade sowie die ordinale Ratingklasse analysiert werden.
Aktualisiert: 2023-06-20
> findR *
Die derzeitige Wirtschaftslage in Europa ist fragil. Spätestens seit dem Kriegsausbruch in der Ukraine und der damit verbundenen Energiekrise in Europa trüben sich die Wachstumserwartungen. Durch die wirtschaftliche Verflechtung zwischen Staaten und Banken ist es in diesen unbeständigen Zeiten wichtig, über Instrumente zu verfügen, um schnell auf veröffentliche Geschäftszahlen von Kreditinstituten reagieren zu können und eigenständig die Bonität von Banken einzuschätzen, da die Anpassung eines externen Ratings oftmals mit einer zeitlichen Verzögerung einhergeht. Daher wird auf Basis von drei Datensätzen mittels maschinellen Lernens versucht, die Determinanten von Emittentenratings von europäischen Banken zu erklären. Unter der Verwendung von Entscheidungsbäumen und logistischen Regressionsmodellen sollen die wesentlichen Einflüsse der binären Klassifikation in die Segmente Investmentgrade und Non-Investmentgrade sowie die ordinale Ratingklasse analysiert werden.
Aktualisiert: 2023-06-20
> findR *
Die derzeitige Wirtschaftslage in Europa ist fragil. Spätestens seit dem Kriegsausbruch in der Ukraine und der damit verbundenen Energiekrise in Europa trüben sich die Wachstumserwartungen. Durch die wirtschaftliche Verflechtung zwischen Staaten und Banken ist es in diesen unbeständigen Zeiten wichtig, über Instrumente zu verfügen, um schnell auf veröffentliche Geschäftszahlen von Kreditinstituten reagieren zu können und eigenständig die Bonität von Banken einzuschätzen, da die Anpassung eines externen Ratings oftmals mit einer zeitlichen Verzögerung einhergeht. Daher wird auf Basis von drei Datensätzen mittels maschinellen Lernens versucht, die Determinanten von Emittentenratings von europäischen Banken zu erklären. Unter der Verwendung von Entscheidungsbäumen und logistischen Regressionsmodellen sollen die wesentlichen Einflüsse der binären Klassifikation in die Segmente Investmentgrade und Non-Investmentgrade sowie die ordinale Ratingklasse analysiert werden.
Aktualisiert: 2023-06-20
> findR *
MEHR ANZEIGEN
Bücher zum Thema Regressionsmodelle
Sie suchen ein Buch über Regressionsmodelle? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Regressionsmodelle. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Regressionsmodelle im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Regressionsmodelle einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Regressionsmodelle - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Regressionsmodelle, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Regressionsmodelle und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.