Predictive Analytics und Data Mining

Predictive Analytics und Data Mining von von der Hude,  Marlis
Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils eine Illustration der Verfahren mit Hilfe von Beispielen, die mit dem Programmpaket R erarbeitet werden. Zum Abschluss wird eine einfache Möglichkeit präsentiert, mit der die Performancewerte verschiedener Verfahren mit statistischen Mitteln verglichen werden können. Zum Einsatz kommen hierbei geeignete Grafiken und Konfidenzintervalle.Das Buch verzichtet nicht auf Theorie, es präsentiert jedoch so wenig Theorie wie möglich, aber so viel wie nötig und ist somit optimal für Studium und Selbststudium geeignet.
Aktualisiert: 2023-07-02
> findR *

Predictive Analytics und Data Mining

Predictive Analytics und Data Mining von von der Hude,  Marlis
Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils eine Illustration der Verfahren mit Hilfe von Beispielen, die mit dem Programmpaket R erarbeitet werden. Zum Abschluss wird eine einfache Möglichkeit präsentiert, mit der die Performancewerte verschiedener Verfahren mit statistischen Mitteln verglichen werden können. Zum Einsatz kommen hierbei geeignete Grafiken und Konfidenzintervalle.Das Buch verzichtet nicht auf Theorie, es präsentiert jedoch so wenig Theorie wie möglich, aber so viel wie nötig und ist somit optimal für Studium und Selbststudium geeignet.
Aktualisiert: 2023-07-02
> findR *

Predictive Analytics und Data Mining

Predictive Analytics und Data Mining von von der Hude,  Marlis
Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils eine Illustration der Verfahren mit Hilfe von Beispielen, die mit dem Programmpaket R erarbeitet werden. Zum Abschluss wird eine einfache Möglichkeit präsentiert, mit der die Performancewerte verschiedener Verfahren mit statistischen Mitteln verglichen werden können. Zum Einsatz kommen hierbei geeignete Grafiken und Konfidenzintervalle.Das Buch verzichtet nicht auf Theorie, es präsentiert jedoch so wenig Theorie wie möglich, aber so viel wie nötig und ist somit optimal für Studium und Selbststudium geeignet.
Aktualisiert: 2023-07-02
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen “Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht.” — Justin Bozonier Leitender Data Scientist bei Grubhub
Aktualisiert: 2023-06-11
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen “Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht.” — Justin Bozonier Leitender Data Scientist bei Grubhub
Aktualisiert: 2023-05-11
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-08
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-08
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-08
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-05
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-05
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-05
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-05-05
> findR *

Nutzung von Support Vector Machines für Ortung und Navigation in der Luftfahrt

Nutzung von Support Vector Machines für Ortung und Navigation in der Luftfahrt von Bollmann,  Sven
The purpose of this work is to reproduce the cognitive and learning processes involved in the field of self-localization and the estimation of the current flight state using Machine Learning and Support Vector Machines (SVM) in particular. A core element of many modern localization algorithms are Bayes filters. An iterative process of time and measurement updates allows the continous estimation of an aircraft's current position and state. A necessary prerequisite for this process are highly sophisticated mathematical models that describe the interpretation of sensor readings as well as the propagation of the aircraft's state in time. Human pilots can usually accomplish this task even without explicit know\-ledge of the flight-mechanical and mathematical principles. They can replace it by previously made observations and by experience. In this work, the biologically motivated and model-free learning of functional relationships regarding the interpretation of sensory perceptions and the propagation of an aicraft's state will be mimicked by Support Vector Machines. They usually outperform classical neural networks such as the multilayer-perceptron in the field of classification and regression problems because of their very good capability to generalize. In addition to the design of a filter architecture suited for the incorporation of Support Vector Machines, this work covers the SVM-based correction of raw data from single- and multi-sensor systems, a SVM system for propagating the state vector as well as procedures for the generation of suitable training data. Finally, a localization method is outlined that is able to determine the respective probability density functions for each time and measurement update within the Bayesian filtering process using only basic arithmetic operations.
Aktualisiert: 2022-12-31
> findR *

Predictive Analytics und Data Mining

Predictive Analytics und Data Mining von von der Hude,  Marlis
Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils eine Illustration der Verfahren mit Hilfe von Beispielen, die mit dem Programmpaket R erarbeitet werden. Zum Abschluss wird eine einfache Möglichkeit präsentiert, mit der die Performancewerte verschiedener Verfahren mit statistischen Mitteln verglichen werden können. Zum Einsatz kommen hierbei geeignete Grafiken und Konfidenzintervalle.Das Buch verzichtet nicht auf Theorie, es präsentiert jedoch so wenig Theorie wie möglich, aber so viel wie nötig und ist somit optimal für Studium und Selbststudium geeignet.
Aktualisiert: 2023-04-04
> findR *

Predictive Analytics und Data Mining

Predictive Analytics und Data Mining von von der Hude,  Marlis
Dieses Buch bietet einen leicht verständlichen Einstieg in die Thematik des Data Minings und der Prädiktiven Analyseverfahren. Als Methodensammlung gedacht, bietet es zu jedem Verfahren zunächst eine kurze Darstellung der Theorie und erklärt die zum Verständnis notwendigen Formeln. Es folgt jeweils eine Illustration der Verfahren mit Hilfe von Beispielen, die mit dem Programmpaket R erarbeitet werden. Zum Abschluss wird eine einfache Möglichkeit präsentiert, mit der die Performancewerte verschiedener Verfahren mit statistischen Mitteln verglichen werden können. Zum Einsatz kommen hierbei geeignete Grafiken und Konfidenzintervalle.Das Buch verzichtet nicht auf Theorie, es präsentiert jedoch so wenig Theorie wie möglich, aber so viel wie nötig und ist somit optimal für Studium und Selbststudium geeignet.
Aktualisiert: 2023-04-01
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-04-24
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-04-24
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen
Aktualisiert: 2023-04-24
> findR *

Ein Verfahren zur Prognose verkehrsabhängiger Schaltzeiten von Lichtsignalanlagen

Ein Verfahren zur Prognose verkehrsabhängiger Schaltzeiten von Lichtsignalanlagen von Weisheit,  Toni
An signalisierten Knotenpunkten besteht ein nicht unerhebliches Einsparpotenzial von Emissionen durch eine energieeffiziente und verbrauchsoptimierte Zufahrt auf die Haltlinie. Durch eine Vorausschau auf die bevorstehenden Schaltzeitpunkte könnten Fahrzeugführer ihre Fahrweise im Zulauf auf eine Lichtsignalanlage so anpassen, dass sie je nach Situation kraftstoffsparend auf Rot zufahren oder bei bevorstehender Freigabe sogar einen Halt vermeiden. Voraussetzung für diese sogenannte Ampelphasenassistenz ist die Prognose der Schaltzeitpunkte, die bei einer Festzeitsteuerung trivial ist. Bei verkehrsabhängigen Lichtsignalanlagen stellt diese Vorhersage jedoch eine große Herausforderung dar. Die vorliegende Arbeit greift diese Problematik auf und stellt ein allgemein anwendbares Verfahren vor, welches allein durch die Auswertung der Schaltzustände von Signalgruppen und durch die Analyse von Detektordaten eine Prognose der Schaltzeiten verkehrsabhängiger Lichtsignalanlagen unabhängig vom jeweiligen Steuerungsverfahren ermöglicht.
Aktualisiert: 2020-06-05
> findR *

Machine Learning Kochbuch

Machine Learning Kochbuch von Albon,  Chris, Langenau,  Frank
Python-Programmierer finden in diesem Kochbuch nahezu 200 wertvolle und jeweils in sich abgeschlossene Anleitungen zu Aufgabenstellungen aus dem Bereich des Machine Learning, wie sie für die tägliche Arbeit typisch sind – von der Vorverarbeitung der Daten bis zum Deep Learning. Entwickler, die mit Python und seinen Bibliotheken einschließlich Pandas und Scikit-Learn vertraut sind, werden spezifische Probleme erfolgreich bewältigen – wie etwa Daten laden, Text und numerische Daten behandeln, Modelle auswählen, Dimensionalität reduzieren und vieles mehr. Jedes Rezept enthält Code, den Sie kopieren, zum Testen in eine kleine Beispieldatenmenge einfügen und dann anpassen können, um Ihre eigenen Anwendungen zu konstruieren. Darüber hinaus werden alle Lösungen diskutiert und wichtige Zusammenhänge hergestellt. Dieses Kochbuch unterstützt Sie dabei, den Schritt von der Theorie und den Konzepten hinein in die Praxis zu machen. Es liefert das praktische Rüstzeug, das Sie benötigen, um funktionierende Machine-Learning-Anwendungen zu entwickeln. In diesem Kochbuch finden Sie Rezepte für: - Vektoren, Matrizen und Arrays - den Umgang mit numerischen und kategorischen Daten, Texten, Bildern sowie Datum und Uhrzeit - das Reduzieren der Dimensionalität durch Merkmalsextraktion oder Merkmalsauswahl - Modellbewertung und -auswahl - lineare und logistische Regression, Bäume und Wälder und k-nächste Nachbarn - Support Vector Machine (SVM), naive Bayes, Clustering und neuronale Netze - das Speichern und Laden von trainierten Modellen “Chris hat den Kochbuchcharakter seines Buchs genutzt, um nicht nur eine Referenz für erfahrene Profis zu bieten, sondern auch eine leicht zugängliche Reihe von kleinen Tutorials, die Anfänger schätzen werden. Dieses Buch ist eine wertvolle Ressource, egal ob man sein Wissen vor einem Vorstellungsgespräch als Data Scientist auffrischen möchte oder eine prägnante und dennoch gründliche Referenz für den Schreibtisch sucht.” — Justin Bozonier Leitender Data Scientist bei Grubhub
Aktualisiert: 2023-04-11
> findR *
MEHR ANZEIGEN

Bücher zum Thema Support Vector Machines

Sie suchen ein Buch über Support Vector Machines? Bei Buch findr finden Sie eine große Auswahl Bücher zum Thema Support Vector Machines. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr hat zahlreiche Bücher zum Thema Support Vector Machines im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche Bücher uvm. Bestellen Sie Ihr Buch zum Thema Support Vector Machines einfach online und lassen Sie es sich bequem nach Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.

Support Vector Machines - Große Auswahl Bücher bei Buch findr

Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum Thema Support Vector Machines, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:

Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien zu finden. Unter Support Vector Machines und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege. Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.