Der Quotienten-Differenzen-Algorithmus von RUTISHAUSER

Der Quotienten-Differenzen-Algorithmus

Im Anschluss an eine praktische Anwendung des BO-Algorithmus (Biortho gonalisierungs-Algorithmus von C. LANCZOS [4], [5]1) machte mich Herr Prof. E. STIEFEL, ETH, auf das Problem aufmerksam, die höheren Eigenwerte direkt aus den sogenannten Schwarzsehen Konstanten zu bestimmen, das heisst ohne den Umweg über die Orthogonalisierung. Auf diese Anregung hin entwickelte der Verfasser einen Algorithmus, der die gestellte Aufgabe löst. Allerdings gab bereits A. C. AITKEN [1] eine Methode an, welche haupt sächlich zur Auflösung algebraischer Gleichungen gedacht war, aber auch die Bestimmung höherer Eigenwerte aus Schwarzsehen Konstanten gestattet. 2 Ferner stammt von C. LANCZOS ein Algorithmus ) zur Bestimmung des charak teristischen Polynoms einer Matrix aus Schwarzsehen Konstanten. Überdies entwickelte J. HADAMARD in seiner Dissertation [2] eine Methode zur Bestim mung der Pole einer durch ihre Potenzreihe gegebenen Funktion. Er hat damit, wie § 1 zeigen wird, auch das eingangs erwähnte Eigenwertproblem gelöst. Wenn hier das schon gelöste Problem nochmals aufgegriffen wird, so geschieht dies deshalb, weil der entwickelte Algorithmus eine Reihe von weiteren An wendungen gestattet und insbesondere auch wertvolle Beziehungen zur Ketten bruchtheorie vermittelt3). Die Arbeit gliedert sich in drei Kapitel, von denen sich die Kapitel I und n mit Theorie und Anwendungen befassen, während III eine Ausdehnung des QD-Algorithmus auf Vektoren behandelt. Schliesslich folgt ein Anhang über verwandte Methoden (insbesondere die LR-Transformation). Die Kapitel I, n, In sind einzeln bereits in der ZAMP erschienen‘), doch ist zu beachten, dass I und n zum Teil erhebliche Veränderungen erfahren haben.

> findR *
Produktinformationen

Der Quotienten-Differenzen-Algorithmus online kaufen

Die Publikation Der Quotienten-Differenzen-Algorithmus von ist bei Springer Basel erschienen. Die Publikation ist mit folgenden Schlagwörtern verschlagwortet: Algorithmen, Berechnung, Eigenvektoren, Eigenwert, Hadamard, Interpolation, Kettenbruch, Konvergenz, Lehrsatz, Matrizen, Polynome, Potenzreihe, Schema, Symmetrische Relation, Tiefe. Weitere Bücher, Themenseiten, Autoren und Verlage finden Sie hier: https://buch-findr.de/sitemap_index.xml . Auf Buch FindR finden Sie eine umfassendsten Bücher und Publikationlisten im Internet. Sie können die Bücher und Publikationen direkt bestellen. Ferner bieten wir ein umfassendes Verzeichnis aller Verlagsanschriften inkl. Email und Telefonnummer und Adressen. Die Publikation kostet in Deutschland 49.95 EUR und in Österreich 51.35 EUR Für Informationen zum Angebot von Buch FindR nehmen Sie gerne mit uns Kontakt auf!