Analysis III
C. Blatter
3 Für die Funktion f(x,y,=):= 1 zum Beispiel hat (1) den Wert (47t/3)R , (2) aber 2 den Wert R·27t·7t=27t R. Um den wahren Sachverhalt zu ergründen, betrachten wir für ein großes, aber festes seIN die im Innern von Q enthaltenen s-Würfel I“. s und bezeichnen sie mit *1 (1 :!;,j:!;,N). Die durch (251. 2) definierte Abbildung g: u:=(r,qJ,. 9)-x:=(x,y,z) führt jeden Würfel W bijektiv in ein krummlinig begrenztes „Klötzchen“ AcB • j j 3 R über (siehe die Fig. 252. 1). Diese Klötzchen bilden zusammen ein die Kugel B • 3 R von innen approximierendes Klötzchengebäude, somit gilt (wir verwenden wie derum das Zeichen == für „ungefähr gleich“): Es sei u das Zentrum des Würfels W und xj:=g(uj)eA . Wir wollen annehmen, j j j die Funktion f sei stetig; dann dürfen wir weiter schreiben Nun ist g differenzierbar und W „klein“, somit ist j g(U) == g(U)+ g. (u)(u-u) eine für alle ue W brauchbare Approximation. Hiernach ist das Klötzchen j A j = g(W) in erster Näherung ein Parallelepiped, das durch Verzerrung des j Würfels *1 mit der linearen Abbildung g. (u) entstanden ist. Aufgrund von Satz (23. 22) gilt daher Fig. 252. 1 88 25. Variablentransformation bei mehrfachen Integralen so daß wir anstelle von (4) erhalten: (5) J,jJ(x)dJ1. x == f(x) Idetg*(u )IJ1. (W) j = ](u) IJ(u)IJ1.