Das vorliegende Buch handelt von den fastperiodischen Funktionen auf Gruppen. Die Theorie dieser Funktionen erfaßt als Spezialfälle unter anderem die Fourierreihen periodischer Funktionen, die eigent lichen von H. BOHR geschaffenen fastperiodischen Funktionen und die Kugelfunktionen. Im Grunde ist die Theorie der fastperiodischen Funk tionen auf Gruppen nichts anderes als die Darstellungstheorie beliebiger, also vor allem auch unendlicher Gruppen. Als wichtigste Anwendung der Hauptsätze über fastperiodische Funktionen auf Gruppen darf man wohl die v. Neumannsehe Beweisführung ansehen, welche zeigt, daß jede kompakte, n-dimensionale Gruppe eine treue endliche unitäre Dar stellung besitzt. Unter Benutzung von Sätzen aus v. Neumanns Theorie der linearen Gruppen kann hieraus gefolgert werden, daß jede kompakte n-dimensionale Gruppe eine Liesche kontinuierliche Gruppe ist. Das bekannte V. Hilbertsche Problem, welches sich allerdings auf noch allgemeinere, etwa lokalkompakte Gruppen bezieht, ist durch diesen Satz für den Fall kompakter Gruppen befriedigend gelöst. Alle an gedeuteten Probleme, Sätze und Zusammenhänge werden in diesem Buche erläutert und bewiesen. Obwohl damit nur ein gewisser (wie mir scheint, besonders schöner) Ausschnitt aus dem Gesamtgebiet der Theorie fastperiodischer Funktionen wiedergegeben wird, dürfte der Leser wohl trotzdem durch die Lektüre in den Stand gesetzt werden, jede Abhandlung, welche sich auf fastperiodische Funktionen bezieht, ohne Schwierigkeiten zu verstehen. In dem letzten Abschnitt dieses Buches wird außerdem versucht, in kurzen Worten einen Überblick über das Gesamtgebiet der fastperiodischen Funktionen zu geben. Einzelne Literaturhinweise, die diesem Abschnitt beigefügt sind, wer den möglicherweise als dngenehm empfunden werden.
Aktualisiert: 2023-07-02
> findR *
Das vorliegende Buch handelt von den fastperiodischen Funktionen auf Gruppen. Die Theorie dieser Funktionen erfaßt als Spezialfälle unter anderem die Fourierreihen periodischer Funktionen, die eigent lichen von H. BOHR geschaffenen fastperiodischen Funktionen und die Kugelfunktionen. Im Grunde ist die Theorie der fastperiodischen Funk tionen auf Gruppen nichts anderes als die Darstellungstheorie beliebiger, also vor allem auch unendlicher Gruppen. Als wichtigste Anwendung der Hauptsätze über fastperiodische Funktionen auf Gruppen darf man wohl die v. Neumannsehe Beweisführung ansehen, welche zeigt, daß jede kompakte, n-dimensionale Gruppe eine treue endliche unitäre Dar stellung besitzt. Unter Benutzung von Sätzen aus v. Neumanns Theorie der linearen Gruppen kann hieraus gefolgert werden, daß jede kompakte n-dimensionale Gruppe eine Liesche kontinuierliche Gruppe ist. Das bekannte V. Hilbertsche Problem, welches sich allerdings auf noch allgemeinere, etwa lokalkompakte Gruppen bezieht, ist durch diesen Satz für den Fall kompakter Gruppen befriedigend gelöst. Alle an gedeuteten Probleme, Sätze und Zusammenhänge werden in diesem Buche erläutert und bewiesen. Obwohl damit nur ein gewisser (wie mir scheint, besonders schöner) Ausschnitt aus dem Gesamtgebiet der Theorie fastperiodischer Funktionen wiedergegeben wird, dürfte der Leser wohl trotzdem durch die Lektüre in den Stand gesetzt werden, jede Abhandlung, welche sich auf fastperiodische Funktionen bezieht, ohne Schwierigkeiten zu verstehen. In dem letzten Abschnitt dieses Buches wird außerdem versucht, in kurzen Worten einen Überblick über das Gesamtgebiet der fastperiodischen Funktionen zu geben. Einzelne Literaturhinweise, die diesem Abschnitt beigefügt sind, wer den möglicherweise als dngenehm empfunden werden.
Aktualisiert: 2023-07-02
> findR *
Das vorliegende Buch handelt von den fastperiodischen Funktionen auf Gruppen. Die Theorie dieser Funktionen erfaßt als Spezialfälle unter anderem die Fourierreihen periodischer Funktionen, die eigent lichen von H. BOHR geschaffenen fastperiodischen Funktionen und die Kugelfunktionen. Im Grunde ist die Theorie der fastperiodischen Funk tionen auf Gruppen nichts anderes als die Darstellungstheorie beliebiger, also vor allem auch unendlicher Gruppen. Als wichtigste Anwendung der Hauptsätze über fastperiodische Funktionen auf Gruppen darf man wohl die v. Neumannsehe Beweisführung ansehen, welche zeigt, daß jede kompakte, n-dimensionale Gruppe eine treue endliche unitäre Dar stellung besitzt. Unter Benutzung von Sätzen aus v. Neumanns Theorie der linearen Gruppen kann hieraus gefolgert werden, daß jede kompakte n-dimensionale Gruppe eine Liesche kontinuierliche Gruppe ist. Das bekannte V. Hilbertsche Problem, welches sich allerdings auf noch allgemeinere, etwa lokalkompakte Gruppen bezieht, ist durch diesen Satz für den Fall kompakter Gruppen befriedigend gelöst. Alle an gedeuteten Probleme, Sätze und Zusammenhänge werden in diesem Buche erläutert und bewiesen. Obwohl damit nur ein gewisser (wie mir scheint, besonders schöner) Ausschnitt aus dem Gesamtgebiet der Theorie fastperiodischer Funktionen wiedergegeben wird, dürfte der Leser wohl trotzdem durch die Lektüre in den Stand gesetzt werden, jede Abhandlung, welche sich auf fastperiodische Funktionen bezieht, ohne Schwierigkeiten zu verstehen. In dem letzten Abschnitt dieses Buches wird außerdem versucht, in kurzen Worten einen Überblick über das Gesamtgebiet der fastperiodischen Funktionen zu geben. Einzelne Literaturhinweise, die diesem Abschnitt beigefügt sind, wer den möglicherweise als dngenehm empfunden werden.
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-02
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-07-03
> findR *
Aktualisiert: 2023-05-26
> findR *
Die Wellengleichung besitzt vielseitige Anwendungen und reichhaltige Facetten. Diese müssen jedoch oft mühsam zusammengetragen werden. Mathematische Aspekte der Wellengleichung werden deshalb in diesem essential in einer Gesamtschau geschildert. Sämtliche mit der Wellengleichung verbundenen Anfangs- und Randwertprobleme werden einbezogen. Klassische Lösungsmethoden mitsamt ihren Querverbindungen werden vorgestellt. Die Methode der charakteristischen Parallelogramme wird durch den Einsatz der Diffenzengleichungen erweitert.
Aktualisiert: 2023-03-14
> findR *
Die Wellengleichung besitzt vielseitige Anwendungen und reichhaltige Facetten. Diese müssen jedoch oft mühsam zusammengetragen werden. Mathematische Aspekte der Wellengleichung werden deshalb in diesem essential in einer Gesamtschau geschildert. Sämtliche mit der Wellengleichung verbundenen Anfangs- und Randwertprobleme werden einbezogen. Klassische Lösungsmethoden mitsamt ihren Querverbindungen werden vorgestellt. Die Methode der charakteristischen Parallelogramme wird durch den Einsatz der Diffenzengleichungen erweitert.
Aktualisiert: 2023-04-04
> findR *
Aktualisiert: 2023-04-04
> findR *
Aktualisiert: 2023-04-03
> findR *
Dem erfolgreichen Konzept von folgend, wird auch im zweiten Teil dieses zweibändigen Analysis-Werkes viel Wert auf historische Zusammenhänge, Ausblicke und die Entwicklung der Analysis gelegt. Zu den Besonderheiten, die über den kanonischen Stoff des zweiten und dritten Semesters einer Analysisvorlesung hinausgehen, gehört das Lemma von Marston Morse. Die Grundtatsachen über die verschiedenen Integralbegriffe werden allesamt aus Sätzen über verallgemeinerte Limites (Moore-Smith-Konvergenz) abgeleitet. Die C?-Approximation von Funktionen (Friedrich Mollifiers) wird ebenso behandelt, wie die Theorie der absolut stetigen Funktionen. Bei den Fourierreihen wird die klassische Theorie in Weiterführung einer von Chernoff und Redheffer entwickelten Methode behandelt. Zahlreiche Beispiele, Übungsaufgaben und Anwendungen, z.B. aus der Physik und Astronomie runden dieses Lehrbuch ab.
Aktualisiert: 2022-08-16
> findR *
3 Für die Funktion f(x,y,=):= 1 zum Beispiel hat (1) den Wert (47t/3)R , (2) aber 2 den Wert R·27t·7t=27t R. Um den wahren Sachverhalt zu ergründen, betrachten wir für ein großes, aber festes seIN die im Innern von Q enthaltenen s-Würfel I". s und bezeichnen sie mit *1 (1 :!;,j:!;,N). Die durch (251. 2) definierte Abbildung g: u:=(r,qJ,. 9)-x:=(x,y,z) führt jeden Würfel W bijektiv in ein krummlinig begrenztes "Klötzchen" AcB • j j 3 R über (siehe die Fig. 252. 1). Diese Klötzchen bilden zusammen ein die Kugel B • 3 R von innen approximierendes Klötzchengebäude, somit gilt (wir verwenden wie derum das Zeichen == für "ungefähr gleich"): Es sei u das Zentrum des Würfels W und xj:=g(uj)eA . Wir wollen annehmen, j j j die Funktion f sei stetig; dann dürfen wir weiter schreiben Nun ist g differenzierbar und W "klein", somit ist j g(U) == g(U)+ g. (u)(u-u) eine für alle ue W brauchbare Approximation. Hiernach ist das Klötzchen j A j = g(W) in erster Näherung ein Parallelepiped, das durch Verzerrung des j Würfels *1 mit der linearen Abbildung g. (u) entstanden ist. Aufgrund von Satz (23. 22) gilt daher Fig. 252. 1 88 25. Variablentransformation bei mehrfachen Integralen so daß wir anstelle von (4) erhalten: (5) J,jJ(x)dJ1. x == f(x) Idetg*(u )IJ1. (W) j = ](u) IJ(u)IJ1.
Aktualisiert: 2023-02-01
> findR *
Viele Fachwissenschaften, Naturwissenschaften zumal, kommen ohne ein gewisses mathematisches Repertoire nicht aus. Der aka demische Unterricht kann dieses freilich nicht mit der vielleicht wünschenswerten mathematischen Gründlichkeit vermitteln, sondern muß - allein schon wegen der für ein Nebenfach verfügbaren Zeit - in besonderem Maße fachspezifische Anwendungsgebiete hervorheben und für sie gleichsam gebrauchsfertiges Handwerkszeug anbieten. Daher haben sich mehr und mehr spezialisierte Lehrveranstaltungen "Mathematik für ... " eingebürgert. Die vorliegenden Taschenbuch Bände basieren auf einer solchen mehrsemestrigen Einführungsvor lesung, die regelmäßig für Studenten der Chemie und benachbarter Fachrichtungen gehalten wird. Der angehende Naturwissenschaftler sollte meines Erachtens auf diesem Gebiet nicht nur die gebräuchlichen Rechentechniken seiner Fachregion kennenlernen, sondern auch auf die Rolle hingewiesen werden, die die Mathematik im Rahmen seines Faches und dessen Theorienbildung spielt. Ein Modellansatz ist nicht schon deshalb gut, weil man mit ihm rechnen kann. Diesem Ziel dient hier eine Stoff gliederung, die vom mathematischen Standpunkt nicht durchweg folgerichtig ist.
Aktualisiert: 2023-02-03
> findR *
Aktualisiert: 2022-03-03
> findR *
Dieses zweibändige Lehrbuch über Höhere Mathematik hat sich zum Standardwerk in der mathematischen Ausbildung von Ingenieuren entwickelt. Hervorgegangen aus langjähriger Lehrtätigkeit der Autoren an der Technischen Universität in München, bietet es Studenten technischer Disziplinen eine gründliche Einführung in alle relevanten Themen. Der vorliegende Band ist stark überarbeitet worden; die zur Prüfungsvorbereitung hervorragend geeigneten Rechenschemata sind jetzt noch konkreter und studentenfreundlicher formuliert. Eindrucksvolle Abbildungen sowie praxisbezogene Beispiele verdeutlichen die vorgestellten Konzepte auf anschauliche Weise. Ideal geeignet als Vorlesungsbegleiter, Repetitorium für Prüfungen und Nachschlagewerk in der Praxis.
Aktualisiert: 2023-03-14
> findR *
Dieses zweibändige Lehrbuch über Höhere Mathematik hat sich zum Standardwerk in der mathematischen Ausbildung von Ingenieuren entwickelt. Hervorgegangen aus langjähriger Lehrtätigkeit der Autoren an der Technischen Universität in München, bietet es Studenten technischer Disziplinen eine gründliche Einführung in alle relevanten Themen. Es stellt konkrete und studentenfreundliche Rechenschemata zur Verfügung, die hervorragend zur Prüfungsvorbereitung geeignet sind. Eindrucksvolle Abbildungen sowie praxisbezogene Beispiele verdeutlichen die vorgestellten Konzepte auf anschauliche Weise. Ideal geeignet als Vorlesungsbegleiter, Repetitorium für Prüfungen und Nachschlagewerk in der Praxis.
Aktualisiert: 2023-03-14
> findR *
MEHR ANZEIGEN
Bücher zum Thema Fourierreihe
Sie suchen ein Buch über Fourierreihe? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Fourierreihe. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Fourierreihe im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Fourierreihe einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Fourierreihe - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Fourierreihe, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Fourierreihe und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.