Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-07-02
> findR *
Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.
Aktualisiert: 2023-07-02
> findR *
Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.
Aktualisiert: 2023-07-02
> findR *
Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.
Aktualisiert: 2023-07-02
> findR *
Das Buch beschäftigt sich mit der Möglichkeit der Prognose von Wohnungseinbrüchen mit Hilfe von Machine-Learning-Verfahren. Die Analyse beschränkt sich auf die Fragestellung, ob nach einem erfolgten Wohnungseinbruch mit einer Nachfolgetat, den sog. Near-Repeats, zu rechnen ist. Dabei wird untersucht, welche Faktoren zu guten Prognoseergebnissen beitragen. Zur Verfügung stehen Daten zu Wohnungseinbrüchen aus Baden-Württemberg aus den Jahren 2010 bis 2017. Ergänzt werden die polizeilichen Daten um geografische Daten, die den Tatort beschreiben. Hiermit wird geprüft, ob kriminalgeografische Faktoren gute Indikatoren zur Prognose von Wohnungseinbrüchen, genauer gesagt Near-Repeats, darstellen. Als Machine-Learning-Verfahren kommen die Verfahren Random Forest, XGBoost, Support Vector Machines, Neuronale Netze und ein Soft-Voting der Modelle zum Einsatz. Mit Hilfe dieser Verfahren kann eine Präzision der Prognosen von über 60% erreicht werden. Es wird außerdem erstmalig gezeigt, dass auch Prognosen für den ländlichen Raum möglich sind.
Aktualisiert: 2023-07-02
> findR *
Der Einsatz von Künstlicher Intelligenz ist auch für die Erfüllung staatlicher Aufgaben relevant. Der Verfasser stellt anschaulich die technische Funktionsweise von selbstlernenden Algorithmen dar. Vor diesem Hintergrund werden verfassungs- und datenschutzrechtlich unverrückbare Grenzen sichtbar gemacht. Zur Veranschaulichung der Risiken werden zwei prominente Referenzbeispiele aus der Justiz und der Eingriffsverwaltung beleuchtet. Trotz bestehender rechtlicher Vorgaben kommt der Verfasser zu dem Ergebnis, dass der staatliche Einsatz von intelligenten Technologien im Recht stärker abgebildet werden muss.
Aktualisiert: 2023-06-29
> findR *
Der Einsatz von Künstlicher Intelligenz ist auch für die Erfüllung staatlicher Aufgaben relevant. Der Verfasser stellt anschaulich die technische Funktionsweise von selbstlernenden Algorithmen dar. Vor diesem Hintergrund werden verfassungs- und datenschutzrechtlich unverrückbare Grenzen sichtbar gemacht. Zur Veranschaulichung der Risiken werden zwei prominente Referenzbeispiele aus der Justiz und der Eingriffsverwaltung beleuchtet. Trotz bestehender rechtlicher Vorgaben kommt der Verfasser zu dem Ergebnis, dass der staatliche Einsatz von intelligenten Technologien im Recht stärker abgebildet werden muss.
Aktualisiert: 2023-06-29
> findR *
Der Einsatz von Künstlicher Intelligenz ist auch für die Erfüllung staatlicher Aufgaben relevant. Der Verfasser stellt anschaulich die technische Funktionsweise von selbstlernenden Algorithmen dar. Vor diesem Hintergrund werden verfassungs- und datenschutzrechtlich unverrückbare Grenzen sichtbar gemacht. Zur Veranschaulichung der Risiken werden zwei prominente Referenzbeispiele aus der Justiz und der Eingriffsverwaltung beleuchtet. Trotz bestehender rechtlicher Vorgaben kommt der Verfasser zu dem Ergebnis, dass der staatliche Einsatz von intelligenten Technologien im Recht stärker abgebildet werden muss.
Aktualisiert: 2023-06-29
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-29
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-28
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-27
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-27
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-27
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-26
> findR *
Die Anwendungen der Disziplin Data Science erweitern und wandeln sich stetig. In diesem Buch geben Insider aus Praxis, Wissenschaft und Lehre detailliert die Ergebnisse ihrer Data-Science-Projekte, Methodenwissen sowie Knowhow zu Vorgehensweisen und Prozessmodellen an den Leser weiter. Dabei wird ein weit gespannter Querschnitt an konkreten Anwendungen beschrieben, erklärt und illustriert: von der Nutzung generativer KI-Systeme über quantitative Textanalyse, Predictive Policing, Erklärbarkeit von Machine-Learning-Modellen, experimentelle Datenanalyse in der Spektroskopie bis hin zu Datenvisualisierung, Strukturgleichungsmodellen und Varianzanalyse.Das Buch richtet sich an jeden, der sowohl am konkreten Einsatz von Datenwissenschaft, Statistik, Maschinellem Lernen und Künstlicher Intelligenz als auch am zugehörigen theoretischen Hintergrund interessiert ist. Praktikern, Studierenden und Lehrenden dürfte es von besonderem Nutzen sein: eine Vielzahl an Abbildungen, Diagrammen und Illustrationen ergänzen die reichhaltigen Textinformationen; Links zu Webseiten und Webapplikationen verweisen auf online verfügbare weitere Informationsquellen und Data-Science-Werkzeuge.
Aktualisiert: 2023-06-26
> findR *
MEHR ANZEIGEN
Bücher zum Thema Predictive Policing
Sie suchen ein Buch über Predictive Policing? Bei Buch findr finden Sie eine große Auswahl Bücher zum
Thema Predictive Policing. Entdecken Sie neue Bücher oder Klassiker für Sie selbst oder zum Verschenken. Buch findr
hat zahlreiche Bücher zum Thema Predictive Policing im Sortiment. Nehmen Sie sich Zeit zum Stöbern und finden Sie das
passende Buch für Ihr Lesevergnügen. Stöbern Sie durch unser Angebot und finden Sie aus unserer großen Auswahl das
Buch, das Ihnen zusagt. Bei Buch findr finden Sie Romane, Ratgeber, wissenschaftliche und populärwissenschaftliche
Bücher uvm. Bestellen Sie Ihr Buch zum Thema Predictive Policing einfach online und lassen Sie es sich bequem nach
Hause schicken. Wir wünschen Ihnen schöne und entspannte Lesemomente mit Ihrem Buch.
Predictive Policing - Große Auswahl Bücher bei Buch findr
Bei uns finden Sie Bücher beliebter Autoren, Neuerscheinungen, Bestseller genauso wie alte Schätze. Bücher zum
Thema Predictive Policing, die Ihre Fantasie anregen und Bücher, die Sie weiterbilden und Ihnen wissenschaftliche
Fakten vermitteln. Ganz nach Ihrem Geschmack ist das passende Buch für Sie dabei. Finden Sie eine große Auswahl
Bücher verschiedenster Genres, Verlage, Autoren bei Buchfindr:
Sie haben viele Möglichkeiten bei Buch findr die passenden Bücher für Ihr Lesevergnügen zu entdecken. Nutzen Sie
unsere Suchfunktionen, um zu stöbern und für Sie interessante Bücher in den unterschiedlichen Genres und Kategorien
zu finden. Unter Predictive Policing und weitere Themen und Kategorien finden Sie schnell und einfach eine Auflistung
thematisch passender Bücher. Probieren Sie es aus, legen Sie jetzt los! Ihrem Lesevergnügen steht nichts im Wege.
Nutzen Sie die Vorteile Ihre Bücher online zu kaufen und bekommen Sie die bestellten Bücher schnell und bequem
zugestellt. Nehmen Sie sich die Zeit, online die Bücher Ihrer Wahl anzulesen, Buchempfehlungen und Rezensionen zu
studieren, Informationen zu Autoren zu lesen. Viel Spaß beim Lesen wünscht Ihnen das Team von Buchfindr.